FPGA Solutions Guide

FPGAs

simplification through integreitons

curonizuis

ELECTRONICS

Enhance Your Design... With Nu Horizons Education and Development Solutions

PORTAL

www.nuhorizons.com/portal

Portal is a monthly publication containing new products, technologies and development tools available from Nu Horizons leading suppliers. Portal is availabe both in print and on the web. Sign up online to receive your copy, be notified of upcoming issues or to request samples of the products found inside.
www.nuhorizons.com/labcam

LabCam delivers online training opportunities in a way that recognizes the value of engineers' time. As easily as You Tube ${ }^{\circledR}$ videos, engineers can quickly load and watch videos from industry leaders consisting of insights on products, evaluation kit overviews, end-user applications and more. Each tutorial is up to ten minutes in length and features technology experts, CEOs and/ or peers introducing new solutions or explaining integral aspects of an important product, solution or application. This free value-added program is packaged for short, informative and high quality distance learning.

Nu Horizons is proud to present our education and training program, which offers engineers the opportunity to participate in technical seminars conducted by experts focused on the latest technologies from our leading suppliers. This program provides higher velocity learning to help minimize start-up time to quickly begin your design process utilizing the latest development tools, software and products. Check online for the latest seminar schedule.

Online Learning Center

 www.nuhorizons.com/olc

Nu Horizons Online Learning Center is designed to provide a complete training experience for engineers - without having to leave the office. New supplier trainings are posted twice a month and range from new product overviews to in-depth technical training and potential design implementations. These live trainings are recorded and archived for your viewing convenience.

Application Notes

In order to simplify the design process, Nu Horizons has created a series of application notes designed to guide engineers through the process of interfacing different devices together. Using a detailed step-by-step approach, these design guides identify key elements in the design process. Topics in the application notes are organized by design task and each topic is a stand-alone section, with a short introduction or overview, followed by the step-by-step design guidelines. All steps include a sufficient level of detail to provide the designer with relevant information to proceed quickly and easily from start to finish.
www.nuhorizons.com/appnotes

Nu Horizons offers a wide range of development / evaluation boards, tools and kits featuring the latest technology from the most trusted suppliers in the industry. Visit the development tool section of our website for a variety of solutions all aimed at providing a low-cost solution for designers to accelerate a product's time-to-market.
Articles Pages
Speed Design and Debug with the Nu Horizons/Xilinx Virtex-5 FXT Development Board Pg 04
Embedded Processing Innovations with Virtex-5 FXT Devices Pg 07
Xilinx FPGA selector guides Pg 12
Associated Products Pages
Datacom
Marvell Pg 18
Memory
Micron Pg 20
Power and Battery Management Solutions
Emerson Pg 22
Exar Pg 24
Linear Technology Pg 27
Micrel Pg 30
Murata Pg 32
On Semiconductor. Pg 34
ST Pg 35
Timing
Pletronics Pg 38

Many modern applications use FPGAs to implement complex system level building blocks. In order to quickly and easily design, prototype and debug these systems it can be helpful to use an FPGA-based Development Board. A Development Board has a high-capacity FPGA, like the Xilinx Virtex-5 FXT family, and a variety of proven peripherals, industry standard interfaces, power supply circuits and status indicators and control switches to make it easy to create a prototype system for even the most complex applications.

The recently introduced Nu Horizons Virtex-5 FXT Development Board contains a wide variety of interfaces, peripherals a supporting circuitry to make it easy to design, prototype and debug your application. The Development Board contains the following key functions/devices:

FPGA:

Xilinx XC5VFX30T (FF665 Package)

Memory:

Xilinx XCF16 Platform Flash
Micron 64M DDR SDRAM
Micron 2x8Gb NAND Flash

Interfaces:

Tianma LCD Display
Video DAC
SFP Module
Marvell 10/100/1G Ethernet PHY
Exar RS-232

Clocking:

IDT Femtoclock Frequency Synthesizer
Pletronics Oscillators and Crystals

Power:

Linear Tech Power Modules Regulators
Each of these features/devices will be explained in more detail and the ways in which they can be used to easily support design, prototype and debug a target application will be summarized. The descriptions will be organized by the functional sub-blocks used in the above outline.

In many cases, additional information is available in the body of the surrounding magazine and pointers to this information will be provided for the reader wishing even more details.
A picture of the Nu Horizons Virtex-5 FXT Development Board is shown in Figure 1.

Figure 1: Nu Horizons Virtex-5 FXT Development Board

FPGA Sub-Section

The Nu Horizons Virtex-5 FXT Development Board includes an XC5VFX30T FPGA with a variety of advanced features that make it a perfect target for a wide range of applications. The XC5VFX30T is just one device in the extensive Virtex-5 Family.

The Virtex-5 family contains four distinct platforms (sub-families), the most choice offered by any FPGA family. Each platform contains a different ratio of features to address the needs of a wide variety of advanced logic designs. In addition to the most advanced, high-performance logic fabric, Virtex-5 FPGAs
contain many hard-IP system level blocks, including powerful 36-Kbit block RAM/ FIFOs, second generation 25×18 DSP slices, Select IO ${ }^{\text {TM }}$ technology with built-in digitally controlled impedance, ChipSync ${ }^{\text {TM }}$ source-synchronous interface blocks, system monitor functionality, enhanced clock management tiles with integrated DCM (Digital Clock Managers) and phase-locked-loop (PLL) clock generators, and advanced configuration options.

Additional platform dependant features include power-optimized high-speed serial transceiver blocks for enhanced serial connectivity, PCl Express $^{\text {™ }}$ compliant integrated Endpoint blocks, tri-mode Ethernet MACs (Media Access Controllers), and high-performance PowerPC® 440 microprocessor embedded blocks. These features allow advanced logic designers to build the highest levels of performance and functionality into their FPGA-based systems. Built on a $65-\mathrm{nm}$ state-of-theart copper process technology, Virtex-5 FPGAs are a programmable alternative to custom ASIC technology. Most advanced system designs require the programmable strength of FPGAs. Virtex-5 FPGAs offer the best solution for addressing the needs of high-performance logic designers, high-performance DSP designers, and high-performance embedded systems designers with unprecedented logic, DSP, hard/soft microprocessor, and connectivity capabilities. A summary of the differences between each Virtex-5 platform is given below:

LX: High-performance general logic applications
LXT: High-performance logic with advanced serial connectivity
SXT: High-performance signal processing applications with advanced serial connectivity
FXT: High-performance embedded
systems with advanced serial connectivity
A selector guide for the entire Virtex-5 Family is included in the accompanying magazine and shows the capabilities of each family member. The XC5VFX30T device used on the development board contains 5,120 logic slices, up to 380 Kb of distributed RAM, 64 DSP 48E slices, 136 18 Kb and 6836 Kb RAM blocks, 2 CMTs, 1 Power PC Processor Blocks, 1 hard

PCl Express Endpoint, 4 hard Ethernet MACs, 8 GTX Rocket 10 Transceivers and 360 general purpose IOs. Each of these features is supported with additional devices on the Development Board so that even the most complex designs can be prototyped.

For more details on using the Xilinx Virtex-5 Family in embedded applications refer to the companion article in the accompanying magazine.

Memory Sub-System

The memory devices used on the development board complement the Xilinx Virtex-5 XC5VFX30T FPGA by providing configuration data, program data for embedded processing and storage datafor a variety of data processing applications. The following sections provide a quick overview of the memory devices and their typical use during design, prototype and debugging.

Xilinx XCF16 Platform Flash

The Xilinx platform flash device is used to configure the XC5VFX30T. It holds enough configuration data to contain multiple configuration images. This is useful when bringing up the initial design since multiple test cases can be loaded and selected during debugging. Later in the development cycle multiple images can store manufacturing tests, specialized conformance or compliance tests or other manufacturing or field related applications.

Micron 64M DDR SDRAM

Included on the development board is a 64M DDR SDRAM from Micron Technology, the MT46V16M16. There are two of the devices to create a 32-bit data interface. This memory sub-system is useful for storing program code for the embedded Power PC processor in the Virtex-5 FPGA or to be used as buffer storage for video, networking or communications applications.

Xilinx provides an easy to use Memory Controller Generator (MIG) tool that is integrated into ISE 10.1 and can generate a memory controller for the MT46V16M16 based subsystem. Nu Horizons has a useful application note showing how to interface Micron DDR memories to the

Virtex-5 Family using MIG and it can be found on the Nu Horizons web site by clicking on the Application Notes banner at the top of the page.

Micron 8Gb NAND Flash

There are two MT29H8G08ACAH1 devices on the development board and these can be used for embedded processor code storage, FPGA configuration data or for application oriented data for code conversion, video processing or DSP related algorithms. Micron NAND memory devices can be used in a variety of FPGA-based applications and provide higher speed, larger storage and improved reliability over other non-volatile alternatives. NAND devices are finding new uses in Solid State Storage (SSD), hybrid hard drives, video on demand and in memory back-up systems. For more information on the capabilities, features and uses of Micron NAND devices refer to the brochure included in the accompanying magazine.

Because the NAND Flash is non-volatile it is useful for storing code and algorithm updates so that field changes, in the final product, can be made remotely. Debugging these capabilities first on the development board can be important since bugs in this part of the design will make it difficult to provide bug fixes in the field.

Standard Interfaces

The interfaces available on the development board allow the designer to get high speed data on and off the FPGA in a variety of ways. 10/100/1G Ethernet, SMA and an SFP module are available for high speed data transfer. In addition, RS-232, a Tianma LCD display and a Video DAC are available for slower speed applications.

Marvell 10/100/1G Ethernet PHY

The development board includes a Marvell 88E1119R 10/100/1G Ethernet PHY in a QFN72 package. This is connected to the hard Ethernet MAC included in the Virtex-5 device. The combination of these two devices provides a flexible Ethernet interface that can be used for a host of common applications.

The 88E1119R is just one of the Alaska® Family of Gigabit Ethernet transceivers

from Marvell. These PHY devices are ideal solutions for a wide range of applications including hubs, switches, routers, PCs, gaming consoles, DVRs, media vaults as well as high performance embedded computing applications in industrial, instrumentation, test and measurement and communications. The current selector guide for the Marvell Ethernet Transceiver series is included in the accompanying magazine. You can select the right device based on the standard supported (10/100/1G/10G Ethernet), the number of ports required (1,2 or 4), the type of interface (SGMII, MII, RMII, SSSMII, GMII, etc) and a variety of other key characteristics.

SMA and SFP Connectors

In addition to the other standard interfaces the development board also contains two generic interfaces in the form of SMA and an SFP module. These connections allow the use of a variety of interconnect protocols (10Gig Ethernet for example) or alternate, off board, clock sources. These are also useful sources for data during system testing and debugging. Source data, which may not be readily available in the eventual, production format, can be transferred over these connections using test equipment or other similar data generators.

Clocking Sub-System

There are a variety of clocking sources and option required on the development board. Some of these are relatively fixed frequencies and others are selectable depending on the interface standard being implemented. The IDT Femtoclock Frequency Synthesizer, ICS843001, is used to provide a programmable clock so that a variety of standards can be supported on the SFP port.

Pletronics Oscillators and Crystals

Pletronics oscillators and crystals are used to create clocks for the main board as well as several of the peripheral Interfaces. Oscillators are used to create 25 MHz and 50 MHz clocks for the FPGA, and the Ethernet PHY. Crystals $(26.5625 \mathrm{MHz}$, and 19.44 MHz) are used to control the Frequency Synthesizer, and the Ethernet PHY.

Pletronics supplies a wide range of oscillators and crystals forevery application. Common frequencies are available for Gigabit Ethernet, 10Gigabit Ethernet, Fibre Channel, Infiniband, ADSL, Serial ATA, PCI Express and Sonet. The selector guide available in the accompanying magazine details the exact frequencies for each of these standards. It also identifies the selection based on 10 standard for all the Xilinx FPGA Families.

Power Sub-System

The power sub-system on the development board provides power to all the devices on the board- FPGA, DDR SDRAM and NAND Flash memory, LCD display, etc. Linear Technology has a wide variety of applicable regulators and modules to supply power to the board.

Linear Technology Regulators and Modules

Linear Technology has created a useful selector guide when powering the Xilinx Virtex-5 Family. As shown in the Virtex-5 portion of the selector guide, the Virtex-5 Family devices require a core voltage of 1.0 V . Depending on the input Voltage, shown in the left column and the Current Required, shown in the top row, the appropriate LTC power solution products are given in the intersection of the row and column. For example, if
we need 5 A, and we will have a voltage input source between 2.5 V to 5 V . We can select between the LTC34XX regulators, the LTM4601 μ Module and various LTC controllers. On the development board the LTC 3418/3412 and LTC4601 modules are used to supply power, just as recommended.

The entire selector guide is available on page 28. Refer to this to discover how these device can save you board space and component count in high-power FPGA-based applications.

Conclusion

The NuHorizons Virtex-5 FXT Development Board has a variety of key devices useful for the design, prototype and debug of a wide range of high-speed embedded functions. Using the FPGAnative PowerPC processor, on-board DDR SDRAM, NAND Flash, 10/100/1000 Ethernet and other key interfaces even the most complex design can get a jump start using the board, documentation, design files and example designs available with the development board. In comparison to building a board from scratch it is possible to save weeks or even months of effort, and avoid common pitfalls and dead ends while leveraging the investment Nu Horizons has made in bringing you this advanced development environment.
$\mathbb{E} X I L I N X$

Embedded Processing Innovations with Virtex-5 FXT Devices

With the advent of the Xilinx® Virtex ${ }^{\text {TM }}-5$ FXT FPGA, you have an opportunity to get ahead of the embedded system design curve. The need to quickly develop and validate embedded systems has never been more apparent than in the realm of embedded system design.

Combining software and hardware to demonstrate this at a system level (as quickly as time permits) has become commonplace in the industry. By providing a more tightly coupled, flexible, scalable solution, you have a means to address many hardware and software SOC design challenges.

FPGAs provide a significantly faster path for designers to rapidly develop, prototype, and test their embedded designs. The Virtex-5 FXT device platform, the third generation FPGA to feature a PowerPC processor, has added an embedded block that will help you meet more demanding design requirements while allowing you to finish your designs quickly and easily.

In this article, we'll provide a detailed description of the embedded processing innovations in the PowerPC 440 processor block and system interconnect. A key area of focus in the Virtex-5 FXT FPGA processor block is simplification through integration.

A corollary to this is ease of development and test. Quickly bringing up a system to allow software developers to get a head start on actual hardware is a major emphasis for the Virtex-5 FXT device's PowerPC 440 processor.

Simplification Through Integration

Integration is key. We have reduced the amount of FPGA logic needed to build a high-performance processing system while still allowing a wide variety of topologies. You still have the flexibility and advantages of an FPGA-based implementation, but you now also have the added benefit of a hardened, integrated interconnect architecture that (among other things) maximizes access to external memory.
As you will see, the result is an embedded block that allows you to develop a wider range of high-performance processing architectures in a shorter period of time. PowerPC processors
generically have three interfaces: instruction read, data read, and data write. In previous Virtex device architectures, which embedded the PowerPC 405, these processor buses would connect to FPGA fabric. The timing closure requirements of this circuitry would vary based on how many and what types of loads the design presented to the buses.

In the Virtex-5 FXT FPGA (where the processor is now the PowerPC 440), these buses are hardened and hooked directly to a new structure, an integrated 5×2 crossbar switch - generically referred to as the crossbar. This hardened interconnect provides significantly higher performance (with virtually no consumption of FPGA logic resources and fixed timing) when combined with the rest of the architectural enhancements in the Virtex-5 FXT device's embedded processor block. This results in an overall system cost reduction and invariably a more tightly integrated processor system.

The processor buses only take up three of the five "crossbar master" ports on the 5×2 crossbar (see Figure 1). The crossbar includes two additional master ports, because in many real-

- By Craig Abramson , Product Marketing Manager , Xilinx, Inc. , craig.abramson@xilinx.com
- Dan Isaacs , Director of Embedded Processor Marketing , Xilinx, Inc. , dan.isaacs@xilinx.com
- Ahmad Ansari , Principal Engineer, Xilinx, Inc., ahmad.ansari@xilinx.com
world applications it's not just the processor that needs access to memory or peripherals. Each of these "crossbar master" ports comprises a processor local bus (PLB) slave interface, as well as two channels of scatter-gather direct memory access (DMA).

The "slave" side of the crossbar comprises two ports. One port is a dedicated memory controller interface that provides a high-throughput generic interface to soft memory controllers. The other is a bus for attaching I/O devices and peripherals.

A Better Processor

Providing all of this extra functionality in the embedded processor block would be of little consequence if there were not a processor with the horsepower to take advantage of it. The Virtex-5 FXT FPGA represents the first time anyone has embedded a PowerPC 440-class processor in an FPGA.

The PowerPC 440 offers a significant performance improvement over the PowerPC 405 (which was embedded in previous Virtex families) in a number of areas.

First, the PowerPC 440, when in the fastest speed-grade FPGA, can be clocked at 550 MHz . The PowerPC 405 topped out at 450 MHz . This is almost a 20\% performance improvement. But add to that the fact that the I and D cache sizes are doubled, the instruction pipeline is seven instead of five stages, and the

	$\begin{gathered} \text { PPC405 } \\ \text { (Virtex-4 FX FPGA) } \end{gathered}$	$\begin{gathered} \text { PPC440 } \\ \text { (Virtex-5 FXT FPGA) } \end{gathered}$	Benefit
Architecture	32-bit instruction, 32-bit address, 64-bit data	32-bit instruction, 36-bit address, 128-bit data, Book E compliant	Access more physical memory, higher speed data movement
Pipline	Single instruction/cycle, five-stage pipeline, in-order issue	Two instructions/cycle, seven-stage pipeline, out-of-order issue	More efficient instruction execution
Caches - I/D	16K/16K, two-way set associative, no locking	32K/32K, 64-way set associative, locking	Less memory access latency
MMU	Page size: 1 KB to 16 MB	Page size: 1 KB to 256 MB	Less page swapping
DMPS Estimate	Page size: 1 KB to 16 MB	1000+ DMIPS	Better benchmarks equal higher performance

execution unit can now execute two instructions out of order and in parallel.

The result? You've got a processor with performance sufficient to handle a great many of today's embedded processing challenges. There are a number of other advantages to moving from the PowerPC 405 to the PowerPC 440, as shown in Table 1. The PowerPC 440 embedded block is shown in
Figure 2.

High-Throughput Switch Matrix

The 5×2 crossbar is more than just a big switch. It provides non-blocking pipelined access from the five crossbar masters to the two crossbar slaves (see Figure 1). It allows concurrent transfers between different agents on the crossbar at the same time.

Figure 2 - The PowerPC 440 embedded processor block

As shown, we'll call the buses going into the crossbar "crossbar masters" and the buses coming out "crossbar slaves." These interfaces are highly pipelined, thus allowing a large number of transactions to be in progress at the same time.

In fact, up to four concurrent transactions can exist: two for each crossbar slave (such as the memory controller or PLB master). Additionally, each crossbar master (that is, the three processor PLBs and the two PLB slave interfaces) can pipeline four read and four write transactions to the same slave.

Another key feature of the crossbar is its highly programmable memory mapping. You can think of the entire system of having available memory space of 4 GB. Both the memory controller interface and the PLB master can have different memory windows mapped into the memory space of any of the crossbar masters. These memory spaces can be programmed through the FPGA bitstream, by the processor at run time, or even by external logic on the FPGA using the crossbar's sideband bus, called the device control register (DCR) bus.

Integrated PLB Interfaces

As we mentioned earlier, many of the buses connected to the crossbar are processor local buses, also called PLBs.

The PLB is one of the standard CoreConnect buses as defined by IBM. An earlier version of the PLB (version 3.4) was used as one of the standard buses on PowerPC 405 designs in Virtex-II Pro and Virtex-4 FX FPGAs and is also used in the new PowerPC 440 embedded processor block.

In the PowerPC 440 embedded processor block, the PLBs connect the processor's internal caches to the input side of the crosspoint.

The buses are:

- ICURD: instruction cache unit read
- DCURD: data cache unit read
- DCUWR: data cache unit write

The PLB used in the Virtex-5 FXT device is version 4.6 (PLB46). The PLB46 bus architecture brings with it a number of new capabilities that give it a nice performance boost over its predecessor. The most obvious is the fact that while PLB34 was 64 bits, PLB46 is 128 bits. But not to worry - if the IP connected to the bus is less than that, the bus will perform dynamic bus sizing as required to accommodate 32- and 64-bit transactions.

We should also point out that the PLB46 version is a Xilinx implementation of the IBM-defined PLB46, optimized to take advantage of FPGA resources.

PLB46 - and indeed all versions of PLB - have the concept of master and slave. This should not be confused with crossbar master and crossbar slave. (Again, refer to Figure 1.) As we stated earlier, there are two PLB slave port interfaces on the crossbar; they are crossbar masters. These slave ports are connected to the FPGA fabric.

In a processor system there is often the need to allow something besides the processor to access external memory or on-chip peripherals. The PLB slave interfaces allow just that. PLB masters, built from FPGA logic, connected to the PLB Slave ports (see Figure 3) can access either the MCI or the MPLB through the crossbar.

Figure 4 - PLB slave buses and DMA channels share crossbar arbitration.
masters; they are the four DMA channels. Each DMA channel has separate 32-bit transmit and 32-bit receive interfaces. They share crossbar arbitration with PLB slave interfaces, as shown in Figure 4.

All DMA ports can be operating at the same time. Each one has a dedicated FIFO, so as one DMA is accumulating data, the other DMA can be pumping data through the crossbar. Each DMA channel operates asynchronously to the processor clock.

The interface into the DMA channels is through an interface called LocalLink. Xilinx uses the LocalLink interface in a number of IP blocks. LocalLink is a pointto- point interface that sends packets to, or receives packets from, some external device.

The most notable type of processor IP that uses the LocalLink interface is the hard embedded tri-mode Ethernet media access controller (TEMAC) block. The TEMAC has a wrapper that allows it to communicate directly with the PowerPC 440 DMA. Although all data paths through the crossbar are 128 bits, the LocalLink interface into and out of the DMA channels are all 32 bits. As such, there is built-in logic between the DMA controller and the crossbar that realigns data.

To maximize throughput and performance, the PowerPC 440 embedded block employs scatter/gather DMA. To make using this capability as easy as possible, Xilinx provides wrappers for the various pieces of IP and embedded blocks it offers.

Figure 5 - Sample system with both PLB and DMA peripherals

The first one targeted specifically toward the PowerPC 440 is the soft wrapper for the embedded TEMAC blocks. This wrapper, combined with the functionality of the DMA engine in the PowerPC 440 embedded block, allows you to easily build a processing system with a high-performance TEMAC connected directly to the PowerPC 440 DMA channels. Figure 5 is a simplified system showing how both DMA and PLB peripherals can be hooked to crossbar master and crossbar slave ports.

The DMA channels are controlled by descriptors, small blocks of memory that are set up by the PowerPC 440 processor before commencing DMA operations. The descriptors control how much data is transferred and where data is located in system memory.

Descriptors can be chained together if need be, effectively creating a sequence of commands to control a DMA channel. The DMA controller is covered in its entirety in the reference guide, entitled "Embedded Processor Block in Virtex-5 FPGAs" (hittp://Lumu.xilinx.com/support/ documentation/user_ guides/ug200pdf).

High-Performance Dedicated Memory Interface

Rounding out the new processor block is the dedicated memory controller interface. The purpose of this interface is to provide a dedicated link out to external memory, but at the same time not be tied to any specific memory technology.

At this time, the memory controller interface supports a stand-alone DDR2 controller and MPMC4 controller, all available through Xilinx Platform Studio, EDK 10.1. This interface provides the flexibility to connect to virtually any memory technology now or in the future.

The memory controller interface is streamlined, comprising address/data/ control. It can be programmed to support 128-, 64-, 32-, or even 16-bit memory. It does width and burst realignment, so while the DMA may be bursting one size packet, the memory controller can buffer and realign the packet data to maximize the bandwidth to the memory. Burst size is programmable and can be $1,2,4$, or 8 , and the memory controller interface will automatically adjust the address to accommodate the various burst widths.

The majority of soft memory controller handshaking signals are generated by the interface on behalf of the memory controller. They are provided ahead of time such that the soft memory controller can generate throttling signals back to the memory interface. The memory controller interface - on behalf of the soft memory controller - can also be programmed to detect bank and row misses ahead of time and will inform the soft memory controller to anticipate a bank or row miss. All of these features together provide a solution whose primary goal is to maximize memory throughput.

Tuning the System

In some situations, a PLB or DMA interface just may not be the right solution. For instance, you might find that you have a software algorithm that takes too many cycles to execute and is affecting your system bandwidth. That algorithm is a great candidate for implementation in hardware, and the interface to which you may want that hardware connected would be the auxiliary processing unit, or APU interface.

The PowerPC 440 has a secondgeneration APU interface that is tightly coupled to the execution units of the processor. The interface is controlled by 16 user defined instructions (UDIs). The data path of the APU interface is 128 bits.

Perhaps the most common use of the APU interface is for connecting to a floating-point unit (FPU). The FPU is IEEE754-compatible and supports both single- and double-precision operations for the PowerPC 440.

The FPU is implemented in the FPGA soft logic fabric and utilizes the DSP48E blocks. The soft logic implementation operates up to half the frequency of the hard embedded processor.

Other uses of the APU interface include hardware algorithm acceleration, as well as an alternative high-bandwidth link to block RAM.

Configuring the Embedded Block

By integrating the PowerPC 440 block in the FPGA, the processor block can be configured in multiple ways. Virtually every interface is programmable.

For example, when you build your processing system in the Xilinx Platform Studio development environment and a bitstream is created, all of the specifications of the processing system are in the bitstream. Thus, when the FPGA starts up, your processor is up and running.

Now, let's say the processing system is up and running and you want to modify the operation of one of the DMA channels. You would do that through the DCR interface. There are DCR registers to control every aspect of DMA operation.

In fact, there is DCR access to virtually every other subsystem of the embedded block: the PLBs and crossbar, memory controller interface, and the APU controller. Refer to Figure 2 for more details.

Putting It All Together

This innovation would be for naught if Xilinx did not provide a comprehensive infrastructure to take advantage of all of the architectural enhancements. We should point out that the Virtex-5 FXT FPGA with the PowerPC 440 block represents our eighth year in embedded processing and our third generation FPGA with a hardened processor.

Throughout that time we've been constantly updating EDK, our awardwinning Embedded Development Kit. EDK includes Platform Studio, with its comprehensive library of IP for hardware design, and Platform Studio SDK, a software development environment familiar to many embedded software engineers.

With the introduction of the Virtex-5 FXT family of devices, we continue to further strengthen our third-party alliances with support from industry-leading operating system providers, including WindRiver Systems with VxWorks and Green Hills Integrity.

Virtex-5 FXT Development Platforms
 Jump-Start Your Design

ML507 Evaluation Board

- XC5VFX70T-1FF1136C
- PCie x 1 Plug-In or Stand-Alone

Figure 6 - Xilinx ML507 evaluation and ML510 development boards

Linux support is provided through LynuxWorks, Monta Vista, and WindRiver Systems. In addition, Xilinx recognizes the importance of open-source Linux, and we're moving forward on that front.

Xilinx and its partner companies are also developing a wide variety of boards. Xilinx has multiple boards for the Virtex-5 FXT device: the ML507 with the XC5VFX70T and the ML510 with the XC5VFX130T, as shown in Figure 6. The ML507 evaluation platform enables your team to quickly begin developing hardware, software, or both. When multiple processors or a motherboard-type platform are required, the ML510 with the dualprocessor XC5VFX130T is ideal.

Conclusion

A high-performance processing solution with optimized data throughput is high on the wish list of embedded designers everywhere. This is true whether you are running critical algorithms at the heart of the latest wireless base station, switching high bandwidth data through a video switch, performing advanced signal processing for guidance systems using coprocessor acceleration, or handling complex control and system management tasks.

The Virtex-5 FXT embedded processor block, with a multi-ported non-blocking integrated processor interconnect and high-performance integrated DMA, offers a solution that allows you to focus on the key elements of your embedded design.

With a virtually unlimited number of ways to harness these embedded capabilities, the Virtex-5 FXT FPGA embedded processing solution provides a highly integrated platform for high-performance, high-throughput SOC designs.

i
※

（a）
영

罪
®
\square
960 웅

960
๕
ஃ

๕

然先

掣
Notes：1．Easpath＂＇＂solutions provide a conversion－free path for volume e production．
2．Each slice comprises two 4 －input logic function generators（LUTs），two storage elements，wide－function multiplexers，and carry logic．

 Multipliers/DSP48A Blocks

Spartan-3A, 3AN \& 3A DSP FPGAs

Delivers the industry's lowest total cost. Period.

- Device DNA Security to deter reverse-engineering, cloning, and overbuilding - Dual power management modes - Breakthrough DSP performance using DSP48A slices with advanced Multiply-Accumulator (3A DSP Only)
- Up to 11 Mb on-chip User Flash (3AN Only)
- Supports 26 differential and singleended I/O standards商

≈ 1
- $1-$
-

1.0 Volt)	
Sc5V	XCI

EEVVXX220T
34,560
221,184

XCE5VL
34,560
221,184
138,240
2,280
212
7,632
12
6
680
340

EE5VLX155T
24,320
155,648

ลั

XCE5VLX110T
17,280
110,592

운 N
$\cong \underset{\sim}{\sim} \simeq$

- $\%$
웅
$\stackrel{\infty}{\sim} 1$
-

$\overline{\text { mi }}$

Virtex ${ }^{\text {© }} 5$ LX FPGA Platform
Optimized for High-performance Logic
(1.0 Volt)
x

XCE5VLX330
51,840

XCEVLXT85T
12,960
82,944

69,120
1,120
148

$\begin{array}{r}148 \\ \hline 5,328 \\ \hline\end{array}$
\simeq

680
340

-
+9
9

I

activity (1.0
1 LX50T
200

HSTL III (1.5V)

XC5VLX20T	XC5VLX30T	XC
-	-	

-

4,800
30,720
30,720
19,200

320
36

$\stackrel{\circ}{\text { ®. }}+$
2
360
180
乙
-
3,120
19,968
$\stackrel{\stackrel{\otimes}{\mathbf{a}}}{\underset{\sim}{\sim}}$

210
26

-

\square
r
$\stackrel{-}{-1,-2}$
EasyPath"'s solutions provide a conversion-free path for volume production. A single Virtex-5 CLB comprises two slices, with each containing four 6 -np 3. Virtex-5 logic cell ratings reflect the increased logic capacity offered by the new 6 -input LUT architecture.
4. Digitally Controlled Impedance (DCI) is available on $/ / 0$ of all devices.
5. One system monitor block included in all devices.
6. Available I/O for each device-package combination: number of Select10 pins (number of Rocket10 transceivers). 6. Available products available Pb--ree and RoHS-Compliant.

[^0]Virtex-5 FPGAs deliver the industry's highest performance and low power with no

- Low dynamic power with 65nm ExpressFabric
technology and powersaving IP blocks
- Built-in PCI Express ${ }^{\oplus}$ and

Ethernet connectivity

- Lowest power serial transceivers: less than - Highest performance processing with built in PowerPC 440 block

Design Simply

Design Completely

Design Today

The Virtex ${ }^{\circledR}$-5 Family:

 The Ultimate System Integration Platform- Increase Your System Performance
- Lower Your System Cost
- Design with Ease

The Virtex-5 family delivers unparalleled system integration capabilities for driving your most mission-critical, high-performance applications. With a choice of five platforms optimized for logic, serial connectivity, DSP and embedded processing with hardened PowerPC ${ }^{\oplus} 440$ processor blocks, the Virtex- 5 family delivers an unprecedented combination of flexibility and performance—backed by world class application support.

Only the Virtex-5 family offers you a complete suite of design solutions built on proven 65 nm technology in devices shipping today.

Get started on your Virtex-5 design. Visit www.xilinx.com/ise for a free 60 day evaluation of any ISE ${ }^{\oplus}$ Design Suite 10.1 product.

ASSOCIATED PRODUCTS

Datacom

Marvell

Memory

Micron

Power and Battery Management Solutions

Micrel
Pg 30

Murata
$\operatorname{Pg} 32$
On Semiconductor
Pg 34

ST

Timing

PRODUCT OVERVIEW

With the proliferation of today's advanced system of broadband networks, the need for reliable performance and faster throughput is increasing. Marvell addresses these growing demands with a complete suite of innovative Ethernet PHY transceivers that meet the unique configurations and requirements of today's vast networking environments. From the completely networked home to the infrastructure that drives it, Marvell's industry-leading transceivers are utilized for a wide array of applications including hubs, switches, routers, PCs, gaming consoles, DVRs, and media vaults.

In addition, Marvell® transceivers include a suite of advanced features that enable optimized form factors and multiple port and cable options, and provide efficient power consumption, high performance, and simple plug-and-play functionality. As an industry leader in the innovation and development of transceiver solutions, Marvell is able to continuously deliver the most advanced and complete PHY products to the broadband market.

GIGABIT ETHERNET

The Marvell Alaska® Gigabit Ethernet (GbE) PHY transceivers address the full range of demands for lower power dissipation, reduced PCB real estate, simplified layout, and higher performance. The quad-port 88E1240 is the latest addition to the Alaska GbE PHY family. The 88E1240 offers the most advanced feature set for low-power, high-port-density switching applications. Also new in the GbE PHY family is the 88E1121R dual-port GbE PHY. The 88E1121R is ideal for DVRs, set-top boxes, and IP phones.

FAST ETHERNET

Products in the Fast Ethernet (FE) family are Marvell's third- and fourth-generation DSP-based FE PHY transceivers. Each device in the FE PHY family offers very low power dissipation, enabling manufacturers to decrease their system costs by reducing power supply requirements. Additionally, the 88E3016 and 88E3018 single-port FE devices are pin-upgradeable to Marvell's 88E1116R Gigabit Ethernet PHY which allows for design flexibility and dual layout for both FE and Gigabit Ethernet applications.

10 GIGABIT ETHERNET

Marvell's 88X201x series of IEEE 802.3ae compliant 10 GbE PHYs enable short reach (SR/SW), long reach (LR/LW), or extended reach (ER/EW) applications for module implementation or system board implementation in LAN or LAN/WAN form. The X2010, X2011, X2012, and X2013 transceivers are fully integrated single-chip devices that perform all the physical functions for 10 GbE and 10 Gigabit Fibre Channel applications, delivering high-speed bi-directional point-to-point data transmissions. The devices provide flexibility by supporting the 10 Gigabit Attachment Unit Interface (XAUI) with the X2010 and X2011 and the 10 Gigabit Media Independent Interface (XGMII) with the X2012 and X2013; each adhering to IEEE 802.3ae specifications.

Marvell Product Selection Guide

GIGABIT ETHERNET

* Green: Lead free, Halogen free

FAST ETHERNET

10 GIGABIT ETHERNET

Copyright © 2008. Marvell International Ltd. All rights reserved. Marvell, the Marvell logo, Moving Forward Faster, Alaska, Datacom Systems on Silicon, Fastwriter, Libertas, Link Street, NetGX, PHYAdvantage, Prestera, Raising The Technology Bar, The Technology Within, Virtual Cable Tester, and Yukon are registered trademarks of Marvell. Marvell Makes It All Possible, Ants, AnyVoltage, Discovery, DSP Switcher, Feroceon, GalNet, GalTis, Horizon, RADLAN, UniMAC, and VCT are trademarks of Marvell. All other trademarks are the property of their respective owners.

M A R V EL L®

Micron High-Performance Data Storage Solutions

Are your high-performance NAND Flash designs bogged down by bottlenecks and bulky designs? If you've been looking for a pathway to greater read/write performance than traditional NAND Flash can deliver, look at what Micron's High-Speed NAND has to offer. Our High-Speed NAND parts deliver the fastest read and write throughputs ever for a NAND Flash device-five times the performance of existing SLC NAND devices. If we were talking cars, we'd be talking Formula 1 fast-something built to get you to market quickly with a top-notch, high-performance design.

Features

Organization

- Page size - x8: 4,320 bytes (4,096 + 224 bytes)
- Block size: 128 pages (512K + 28K bytes)
- Plane size: 4 planes $\times 512$ blocks per plane
- Device size - 8Gb: 2,048 blocks; 16Gb: 4,096 blocks; 32Gb: 8,192 blocks

I/O and Array Performance

- Up to $200 \mathrm{MB} /$ s read speed
- Up to $100 \mathrm{MB} /$ s write speed
- 100,000 program/erase cycles, 10-year data retention

Operating Temperature

- $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Applications

- SSDs
- Hybrid hard drives
- Networking video-on-demand applications
- Memory backup systems
- High-performance flash cards

4 Advantages of Designing with High-Speed NAND

1. Breakthrough Performance

The high-speed interface delivers the fastest read and write throughputs ever for a NAND Flash device.

2. Simplified Design

Compatibility with ONFI 1.0/2.0 asynchronous/ synchronous interface enables both backwardcompatible and forward-looking designs.

3. Cost Savings

Reduced system complexity provides better performance at a lower cost.

4. An Evolution of NAND

Traditional NAND benefits like nonvolatility, reliability, and density still apply, enabling leading-edge applications to store more data.

Speed is the Thing

We developed High-Speed NAND to provide new levels of performance for mass storage applications. And we did it with a quad-plane architecture, synchronous DDR interface, and speed-optimized read and write logic. The result is a measurable competitive advantage-
5 times the performance of existing SLC and 30 times the performance of existing MLC devices. The fast read and write throughputs will break through any bottleneck you may have experienced with traditional NAND and provide a powerful data storage solution for your design.

Implementation is Easy

We collaborated with the Open NAND Flash Interface (ONFI) Working Group and designed our High Speed NAND family to the ONFI 2.0 standard to make it easier to design in to future high-performance applications. And the common footprint, command set, and interface promotes interoperability between NAND densities and process technologies. Our High-Speed NAND is definitely forward looking and focused on speed, but its backward compatibility with ONFI 1.0 asynchronous NAND Flash makes it a smooth, scalable transition to higher performance.

Cost Savings is a Plus

If you're calculating costs, you'll see that you'll save money on overall system costs using High-Speed NAND Flash. By combining a new high-speed interface with NAND's inherent
cost advantages, we've optimized the price/performance model. High-Speed NAND requires fewer interleaved channels compared to traditional high-performance NAND designs that require sophisticated caching techniques and multi-channel interleaving to achieve high data throughput. Reducing the number of memory channels and overall system complexity is one way High-Speed NAND can deliver equal or greater performance at a lower cost. It also achieves higher performance with lower densities and fewer devices.

High-Speed NAND is the Road Map for the Future

With the introduction of this high-speed architecture, High-Speed NAND is meeting demands for higher performance and opening doors to new applications, including opportunities in the computing, industrial, and consumer electronics segments. Not surprisingly, Micron is satisfying current requirements and paving the way for new applications by being the first to create a new category of High-Speed NAND products based on the ONFI 2.0 standard.

Visit www.micron.com/highspeed for more details about how High-Speed NAND can enhance your next performance-focused or mission critical mass storage application.

Comparison of Flash Family Features

	High-Speed NAND	SLC NAND	MLC NAND	MLC NOR
Read Performance	$200 \mathrm{MB} / \mathrm{s}$	$40 \mathrm{MB} / \mathrm{s}$	$33 \mathrm{MB} / \mathrm{s}$	$103 \mathrm{MB} / \mathrm{s}$
Write Performance	$100 \mathrm{MB} / \mathrm{s}$	$15 \mathrm{MB} / \mathrm{s}$	$3.5 \mathrm{MB} / \mathrm{s}$	$<1.0 \mathrm{MB} / \mathrm{s}$
Erase Performance	1.5 ms	1.5 ms	2 ms	900 ms
Endurance (cycles)	100,000	100,000	10,000	100,000
Density	8Gb-32Gb* Async/Sync ONFI 1.0/2.0	$1 \mathrm{~Gb}-64 \mathrm{~Gb}$	$8 \mathrm{~Gb}-64 \mathrm{~Gb}$	$1 \mathrm{Mb}-1 \mathrm{~Gb}$
ONFI 1.0	ONFI 1.0	Random Access		

[^1]

Emerson Network Power has the broadest DC-DC product offering in the industry and our DC-DC products are well-suited to power FPGA and CPLD Core and I/O requirements from 0.9 V to $5.0 \mathrm{~V} @ 1$ to 30 amps . Many power silicon suppliers offer power solutions for FPGAs and CPLDs using discrete solutions (PWM controllers, MOSFETs, capacitors, resistors, output inductors). These types of discrete solutions may seem attractive initially from a pure BOM cost assessment. However, modular solutions can be a lower total cost solution in many applications and offer the following significant advantages to designers.

Point of Load (POL) Modular Solution Advantages

- Faster time to market with minimal engineering resources
- Scalable footprints and pin-outs from 2.5 to 10 amps and from 15 to 30 amps
- Wide input voltage range from 3.0 V to 13.8 V
- Programmable outputs from 0.59 V to 5.1 V to source any FPGA Core or I/O voltage from 0.9 V to 3.3 V
- Better efficiency - up to 95\%
- Reduced BOM parts count - 1 part number versus 20+ different discrete part numbers
- Reduced PC board real estate
- Proven reliability - MTBF up to 10 million hours
- International safety approvals
- Lower total cost solution

EMERSON
Network Power

Exar

Power Management Solutions for Xilinx Devices

Need Market Proven Power Management Solutions for your FPGA, or PLD designs?

Targeting Point-of-Load applications requiring:
■ High current density

- Power sequencing
- High efficiency

- Wide input low duty cycle voltage conversions

See how Exar's step down controllers and regulators such as the PowerBlox™ family of scalable, synchronous and non-synchronous converters can get your designs to market faster Try our on-line design tools too!

Core or I/O Voltage	Input Voltage	$\leq 600 \mathrm{~mA}$	$\leq 1.5 \mathrm{~A}$	$\leq 3 \mathrm{~A}$	$\leq 6 \mathrm{~A}$	$\leq 12 \mathrm{~A}$	$\leq 12 \mathrm{~A}-20 \mathrm{~A}$
$\begin{gathered} 1.0 \mathrm{~V} \\ \text { Virtex-5® } \end{gathered}$	3.0V-5.5V	SP6669	XRP6657 ${ }^{2}$	SP7661 ${ }^{1}$	SP7663 ${ }^{1}$	SP7662 ${ }^{1}$	SP6133 ${ }^{1}$
	$\leq 16 \mathrm{~V}$	SP7656	SP7656	SP7662	SP7662	SP7662	SP6133
1.2 V Virtex-4® Spartan-3®	3.0V-5.5V	SP6669	XRP6657 ${ }^{2}$	SP7661	SP7663	SP7662	SP6133 ${ }^{1}$
	$\leq 18 \mathrm{~V}$	SP7656	SP7656	SP7662	SP7662	SP7662	SP6133
```1.8V Virtex-E® CoolRunner II® Spartan-IIE®```	$3.0 \mathrm{~V}-5.5 \mathrm{~V}$	SP6669	XRP6657 ${ }^{2}$	SP7661 ${ }^{1}$	SP7663 ${ }^{1}$	SP7662 ${ }^{1}$	SP6133 ${ }^{1}$
	$\leq 15 \mathrm{~V}$	SP7656	SP7661	SP7661	SP7663	SP7662	SP6133
	$\leq 22 \mathrm{~V}$	SP7656	SP7656	SP7662	SP7662	SP7662	SP6133
	$\leq 26 \mathrm{~V}$	SP7656	SP7656	SP6132H	SP6132H	SP6132H	SP6132H
$\begin{gathered} 2.5 \mathrm{~V} \\ \text { Spartan-II® } \end{gathered}$	$3.0 \mathrm{~V}-5.5 \mathrm{~V}$	SP6669	XRP6657 ${ }^{2}$	SP7661 ${ }^{1}$	SP7663 ${ }^{1}$	SP7662 ${ }^{1}$	SP6133 ${ }^{1}$
	$\leq 20 \mathrm{~V}$	SP7661	SP7661	SP7661	SP7663	SP7662	SP6133
	$\leq 22 \mathrm{~V}$	SP7656	SP7656	SP7662	SP7662	SP7662	SP6133
	$\leq 28 \mathrm{~V}$	SP7656	SP7656	SP7656	SP6132H	SP6132H	SP6132H
3.3 V   CoolRunner XPLA3 ${ }^{\text {TM }}$	3.0V-5.5V	SP6669	XRP6657 ${ }^{2}$	SP7661 ${ }^{1}$	SP76631	SP7662 ${ }^{1}$	SP6133 ${ }^{1}$
	$\leq 22 \mathrm{~V}$	SP7661	SP7661	SP7661	SP7663	SP7662	SP6133
	$\leq 28 \mathrm{~V}$	SP7656	SP7656	SP7656	SP6132H	SP6132H	SP6132H

Reouries 5 V bas voltage for input voltages $<4.5 \mathrm{~V}$

Power ${ }^{2}$ Iow
power design made easy

All trademarks are the property of their respective owners.

## Exar PowerBlox ${ }^{\text {TM }}$ for FPGA Designers

## PowerBlox ${ }^{\text {TM }}$

- High power density single chip synchronous buck regulator family
- High efficiency and performance
- Achieves up to 95\%
- Outstanding thermal management
- FPGA and PLD centric solutions
- Scalable solution


## Unique footprint for 3A to 12A design

- Easily upgradable or cost reduced design
- Customizable and flexible prototyping
- Simple clock rate migration
- Multiple sequencing options



## High performance design solution generator and simulator

- As simple as entering Vin, Vout and current load
- Schematics and Bill of Material generator
- Extensive waveforms viewer and transient analysis capability
- Supports multiple outputs

■ All in less than 10 minutes!




## inrevilum by Tokyo Electron Device Ltd．



## More FPGA Needs in More Applications

## NEW！Virtex－5 High Density PCI Express Platform

Tokyo Electron Device Limited has released three inrevium Virtex－5 High－Density PCI Express Platforms．
These PCI Express Gen $1 \& 2$ capable platforms utilize Xilinx Virtex－5 LX330T，SX240T and FX200T FPGAs， the highest density FPGAs available．
Expansion I／O connectors enable a wide variety of interfaces by connecting various optional boards．
In addition，the large－scale ASIC prototype development can be realized by a cable connecting of multiple FPGA boards．
Available now throughout North America，Europe and Asia．


Jump－start your next FPGA design with the inrevium platform，visit at
http：／／wwW＿inrevium．jp／eng／x－fpga－board／


## TOKYO ELECTRON DEVICE LIMITED

## World Headquarters

Yokohama East Square 1－4，Kinko－cho，Kanagawa－ku，Yokohama City，Kanagawa，221－0056 JAPAN Tel．＋81－45－443－4016 E－mail．psd－sales＠teldevice．co．jp US office
2953 Bunker Hill Lane，Suite 300Santa Clara，CA 95054，USA Tel．＋1－408－919－4772

Inrevium boards are available through：
NU Nu Horizons Electronics Corp．
（DREDIS
Phone：＋1－888－747－NUHO（6846）
URL http：／／www．nuhorizons．com／x－fpga－board

## Linear Technology Compact Power Supplies FPGA-Based Systems

## Tiny $\mu$ Module $^{\text {TM }}$ Power Supplies Fit on Both Sides of PC Board

Our $\mu$ Module DC/DC point-of-load power supply family is complete with built-in inductor, MOSFETs, bypass capacitors and compensation circuitry. At only 2.8 mm height, these tiny, lightweight ( 1.7 g ) point-of-load regulators fit the tightest spaces on top and bottom of your board. Small size and impressive low thermal impedance allow high power conversion from a wide range of voltages. Our $\mu$ Module DC/DC converters simplify the design of your FPGA-based system and are backed by rigorous testing and high product reliability.
$\mu$ Module DC/DC Converters for Core, I/O, Clock \& System Power

$\mathrm{V}_{\text {IN }}: 4.5 \mathrm{~V}-28 \mathrm{~V}$; $\mathrm{V}_{\text {OUT }}: 0.6 \mathrm{~V}-5 \mathrm{~V}$						LGA Package ( $15^{\circ} \mathrm{C} / \mathrm{W}$ )	
Part No.	lout   (A)	Current Share	PLL	Track, Margin	Remote Sense	Height (mm)	Area   (mm)
LTM4602	6	Combine two for $12 \mathrm{~A} \text { to } 24 \mathrm{~A}$   or   $4 x$ LTM4601 for ${ }^{\leq} 48 \mathrm{~A}$				2.8	$15 \times 15$
LTM4603	6		$\checkmark$	$\checkmark$	$\checkmark$		
LTM4603-1	6		$\checkmark$	$\checkmark$			
LTM4600	10						
LTM4601	12		$\checkmark$	$\checkmark$	$\checkmark$		
LTM4601-1	12		$\checkmark$	$\checkmark$			
Vin: 2.375V-5.5V; Vout: 0.8V-5.0V							
LTM4604	4	Combine two for 8A	$\checkmark$			2.3	9x15

# Power Management Solutions for Xilinx Programmable Logic Devices 


$\int$ LTECHNOLOGY

## VIRTEX ${ }^{\text {M }}$ - 5

Core Voltage: 1.0V

Input Supply	$\leq 200 \mathrm{~mA}$	$\leq 500 \mathrm{~mA}$	$\leq 1 A-1.5 A$	$\leq 2 A-5 A$	5A - 10A	Up to 25A
1.8 V	LT ${ }^{\text {® }} 3020$ Linear LTC ${ }^{\oplus} 3549$ Buck	LT3080 Linear LTC3409 Buck	LT3080 Linear LTC3026 Linear	LTC3713 Controller	LTC3713 Controller	N/A
2.5 V to 5V	LT3020 Linear LTC3549 Buck LTC3410 Buck	LT3080 Linear LTC3406A Buck LTC3542 Buck	LTC3561 Buck LTC3411A Buck LTC3564 Buck LTC3568 Buck	LTC3412A Buck LTC3414 Buck LTC3801 Controller LTC3809 Controller	LTC3418 Buck LTC3822 Controller LTM $^{\oplus} 4601 \mu$ Module LTC1778 ${ }^{\text {TM }}$ ©	LTC3822 Controller LTC3713 Controller LTC3832 Controller LTC1778 Controller
$\leq 12 \mathrm{~V}$ to 24V	LT3502 Buck	LT3502 Buck	LT3493 Buck LT3685 Buck LT3481 Buck LT3505 Buck	LT3680 Buck LTC1771 Controller LTC1778 Controller LTC3770 Controller	LTM4601 $\mu$ Module* LTC3832 Controller LTC1778 Controller LTC3823 Controller	2 x LTM4601 $\mu$ Module* LTC1778 Controller LTC3823 Controller

VIRTEX-4 \& Spartan ${ }^{\text {TW }}$-3 Family

Input Supply	$\leq 200 \mathrm{~mA}$	$\leq 500 \mathrm{~mA}$	$\leq 1 A-1.5 A$	$\leq 2 A-5 A$	5A-10A	Up to 25A
1.8V	LT1761 Linear LTC3035 Linear LTC3549 Buck	LT1965 Linear LT3080 Linear LT1763 Linear LTC3409 Buck	LT1965 Linear LT3080 Linear LTC3026 Linear	LTC3713 Controller	LTC3713 Controller	LTC3713 Controller
2.5 V to 5V	LT3020 Linear LTC3035 Linear LTC3410 Buck LTC3549 Buck	LT1965 Linear LT1763 Linear LTC3542 Buck LTC3560 Buck	LT1965 Linear LT3080 Linear LTC3411A Buck LTC3564/8 Bucks	LTC3412A Buck LTC3414 Buck LTC3801/9 Controllers LTC1773 Controller	LTC3418 Buck LTC3822 Controller LTM4601 $\mu$ Module* LTC1778 Controller	LTC3713 Controller LTC3832 Controller LTC1778 Controller LTC3778 Controller
$\leq 12 \mathrm{~V}$ to 24V	LT3502 Buck	LT1933 Buck LT3493 Buck LT3502 Buck	LT3503 Buck LT3505 Buck LT1936 Buck LT3481Buck	LT3680 Buck LTC1771 Controller LTM4603 $\mu$ Module* LTC1778 Controller	LTM4601 $\mu$ Module ${ }^{*}$ LTC3772 Controller LTC1778 Controller LTC3823 Controller	2 x LTM4601 $\mu$ Module* LTC1778 Controller LTC3823 Controller

## VIRTEX-II PRO ${ }^{\text {Tw }}$ \& VIRTEX-II

Core Voltage: 1.5V

Input Supply	$\leq 200 \mathrm{~mA}$	$\leq 500 \mathrm{~mA}$	$\leq 1 A-1.5 A$	$\leq 2 A-5 A$	5A-10A	Up to 25A
1.8 V	LTC1844 Linear LTC3035 Linear LT1962 Linear LTC3549 Buck	LT1763 Linear LT1965 Linear LT3080 Linear LTC3409 Buck	LT1965 Linear LT3080 Linear LTC3026 Linear	LTC3713 Controller	LTC3713 Controller	LTC3713 Controller
2.5 V to 5V	LT1762 Linear LTC3035 Linear LTC3410 Buck LTC3549 Buck	LT1965 Linear LT3080 Linear LT1763 Linear LTC3542 Buck LTC3406A Buck	LT1965 Linear LT3080 Linear LT1963A Linear LTC3561 Buck LTC3411A Buck	LTC3412A Buck LTC3414 Buck LTC3801 Controller LTC3809 Controller	LTC3418 Buck LTC3822 Controller LTM4601 $\mu$ Module* LTC1778 Controller	LTC3713 Controller LTC3832 Controller LTC1778 Controller LTC3778 Controller
$\leq 12 \mathrm{~V}$ to 24V	LT3470 Buck LT3502 Buck LT1616 Buck	LT1616 Buck LT1933 Buck LT3493 Buck	LT3503 Buck LT3505 Buck LT3481 Buck LT3684 Buck	LT3680 Buck LTC1771 Controller LTM4603 $\mu$ Module* LTC1778 Controller	LTM4601 $\mu$ Module* LTC3610 Buck LTC3772 Controller LTC1778 Controller LTC3823 Controller	$2 \times$ LTM4601 $\mu$ Module* LTC1778 Controller LTC3823 Controller LT1952 Controller

VIRTEX-E, Spartan-IIE \& CoolRunner ${ }^{\text {rw- }}$-II
Core Voltage: 1.8 V

Input Supply	$\leq 200 \mathrm{~mA}$	$\leq 500 \mathrm{~mA}$	$\leq 1 A-1.5 A$	$\leq 2 A-5 A$	5A-10A	Up to 25A
0.9 V to 1.8 V	LTC3525 Boost LTC3429 Boost LTC3526 Boost	LT1613 Boost	N/A	N/A	N/A	N/A
2.5 V to 5V	LTC1844 Linear LTC3035 Linear LT1762 Linear LTC3405A Buck LTC3410 Buck	LT1965 Linear LT3080 Linear LTC3542 Buck LTC3406A Buck	LT1965 Linear LT3080 Linear LT1963A Linear LTC3561 Buck LTC3411A Buck	LTC3414 Buck LTC3801/9 Controllers LTM4603 $\mu$ Module* LTC1773 Controller	LTC3418 Buck LTC3822 Controller LTM4601 $\mu$ Module* LTC3610 Buck	LTC3822 Controller LTC3713 Controller LTC3832 Controller LTC3778 Controller
$\leq 12 \mathrm{~V}$ to 24V	LT3470 Buck LT1934 Buck LT1616 Buck LT3502 Buck	LT1616 Buck LT3502 Buck LT1933 Buck LT3493 Buck	LT3503 Buck LT3505 Buck LT3481 Buck LT3684 Buck	LT3680 Buck LTC1771 Controller LTM4603 $\mu$ Module* LTC1778 Controller	LTM4601 $\mu$ Module* LTC3610 Buck LTC1778 Controller LTC3823 Controller	$2 \times$ LTM4601 $\mu$ Module* LTC1778 Controller LTC3823 Controller LT1952 Controller


Input Supply	$\leq 200 \mathrm{~mA}$	$\leq 500 \mathrm{~mA}$	$\leq 1 A-1.5 A$	$\leq 2 A-5 A$	$5 A-10 A$	Up to 25A
1.8V	LTC3525 Boost LTC3427 Boost LTC3429 Boost LTC3499 Boost	LTC3499 Boost LTC3426 Boost LTC3422 Boost	LTC3421 Boost LTC3428 Boost LTC3426 Boost	LTC3425 Boost LTC1872 Boost Controller LTC1700 Boost Controller	N/A	N/A
2.5 V to 5V	LTC1844 Linear LTC3035 Linear LT1962 Linear LTC3410 Buck	LT3080 Linear LT1763 Linear LT1965 Linear LTC3542 Buck LTC3560 Buck	LTC3561 Buck LTC3411A Buck LT1619 SEPIC Controller	LTC3414 Buck LTC3801 Controller LTC3809 Controller LT1619 SEPIC Controller	LTC3418 Buck LTM4601 $\mu$ Module* LTC3610 Buck LTC3822 Controller	LTC3822 Controller   LTC3713 Controller   LTC3832 Controller   LTC1778 Controller
$\leq 12 \mathrm{~V}$ to 24V	LT3470 Buck LT1934 Buck LT1616 Buck LT3502 Buck	LT1616 Buck LT3502 Buck LT1933 Buck LT3493 Buck	LT3503 Buck LT3505 Buck LT3684 Buck LT1936 Buck	LT3680 Buck LTC1771 Controller LTM4603 $\mu$ Module* LTC1778 Controller	LTM4601 $\mu$ Module* LTC3610 Buck LTC1778 Controller LTC3823 Controller	$2 \times$ LTM4601 $\mu$ Module* LTC1778 Controller LTC3823 Controller LT1952 Controller

## CoolRunner XPLA3

Input Supply	$\leq 200 \mathrm{~mA}$	$\leq 500 \mathrm{~mA}$	$\leq 1 A-1.5 A$	$\leq 2 A-5 A$	5A-10A	Up to 25A
1.8 V to 2.5 V	LTC3525 Boost LTC3526 Boost LTC3429 Boost	LTC3426 Boost LTC3421 Boost LTC3422 Boost LTC3499 Boost	LTC3426 Boost LTC3421 Boost LTC3428 Boost	LTC3428 Boost LTC3425 Boost LTC1871 Boost Controller	N/A	N/A
Li-lon 2.7V to 4.2V	LTC3531 Buck-Boost LTC3530 Buck-Boost LTC3440 Buck-Boost	LTC3530 Buck-Boost LTC3440 Buck-Boost LTC3538 Buck-Boost	LTC3442 Buck-Boost LTC3443 Buck-Boost LTC1871 SEPIC Controller	LTC3785 Buck-Boost Controller LTC1872 SEPIC Controller LTC1871 SEPIC Controller LT1619 SEPIC Controller	LTC3785 Buck-Boost Controller LT1619 SEPIC Controller	LTC1682 + LTC1778
$\leq 5 \mathrm{~V}$	LTC1844 Linear LTC3035 Linear LT1962 Linear LTC3410 Buck	LT1965 Linear LT3080 Linear LT1763 Linear LTC3560 Buck	LT1963A Linear LTC3561 Buck LTC3411A Buck	LTC3414 Buck LTC3415 Buck LTC3809 Controller LTM4603 $\mu$ Module*	LTC3418 Buck LTM4601 $\mu$ Module* LTC3610 Buck LTC3778 Controller	LTC3830 Controller LTC3832 Controller LTC3770 Controller LTC3778 Controller
$\leq 12 \mathrm{~V}$ to 24V	LT3470 Buck LT1934 Buck LT1616 Buck LT3502 Buck	LT1616 Buck LT3502 Buck LT1933 Buck LT3493 Buck	LT3503 Buck LT3505 Buck LT1936 Buck LT3684 Buck	LT3680 Buck LTC1771 Controller LTM4603 $\mu$ Module* LTC1778 Controller	LTM4601 $\mu$ Module* LTC3610 Buck LTC1778 Controller LTC3823 Controller	$2 \times$ LTM4601 $\mu$ Module* LTC1778 Controller LTC3823 Controller LT1952 Controller

## Power Supplies for I/O

I/O Voltage	Input Voltage	500 mA	1A	2A - 5A	6A - 10A	20A
3.3V	12 V	LT1616, LT1933	LT1936, LT1767	LT3680, LTC1778, LTC3770	LTM4601, LTC1778	$2 \times$ LTM4601, LTC1778
	5 V	LTC3406A, LT1962, LT1965	LT1965, LTC3411A	LTC3412/A, LTC3414, LTC3809	LTC3415, LTC3418, LTC1778	LTC1778
2.5 V	12 V	LT1616, LT1933	LT1936, LT1767	LT3680, LTC1778, LTC3770	LTM4601, LTC1778	LTC1778
	5 V	LTC3560, LT1962, LT1965	LT1963A, LT1965, LTC3411A	LTC3412/A, LTC3414, LTC3809	LTM4601, LTC3415, LTC3418	$2 \times$ LTM4601, LTC1778
	3.3 V	LTC3560, LT1962, LT1965	LT1963A, LT1965, LTC3411A	LTC3412/A, LTC3414, LTC3809	LTC3832, LTC3822, LTC3418	LTC3836, LT3740
1.8 V	5 V	LTC3560	LTC3411A, LT1767	LTC3412/A, LTC3414, LTC3809	LTM4601, LTC3418	$2 \times$ LTM4601, LTC1778
	3.3 V	LTC3560	LT1963A, LT1965, LTC3411A	LTC3412/A, LTC3414, LTC3809	LTC3832, LTC3822, LTC3418	LTC3836, LT3740
	2.5 V	LTC3560, LTC3406A, LT1965	LT1963A, LT1965, LTC3411A	LTC3412/A, LTC3414, LTC3801	LTC3418, LT3740	LT3740
1.5 V	5 V	LTC3560	LTC3411A, LT1767	LTC3412/A, LTC3414, LTC3809	LTM4601, LTC3418	$2 \times$ LTM4601, LTC1778
	3.3 V	LTC3560	LT1963A, LT1965, LTC3411A	LTC3412/A, LTC3414, LTC3809	LTC3832, LTC3822, LTC3418	LTC3836, LT3740
	2.5 V	LTC3560, LTC3406A, LT3021	LT1963A, LT1965, LTC3411A	LTC3412/A, LTC3414, LTC3801	LTC3415, LTC3418, LT3740	LT3740
	1.8 V	LTC3406A, LT3021, LT1965	LT3080, LT1965, LT1764A	LT1764A, $2 \times$ LT3080, LT3150	LT3150, LTC3713	LTC3713

## Dual Output Switching Regulators

Part Number	Architecture	$V_{\text {IN }}$ Range (V)	Max Iout(1)/Iout(2) (A)	Part Number	Architecture	$V_{\text {IV }}$ Range (V)	Max IoUT(1)/Iout(2) (A)
LTC3547	Monolithic	2.5-5.5	0.3/0.3	LTC3546	Monolithic	$2.25-5.5$	2/2 or 3/1
LTC3548	Monolithic	2.5-5.5	0.4/0.8	LT3501	Monolithic	3-30	3/3
LTC3419	Monolithic	$2.5-5.5$	0.6/0.6	LTC3736/-1	Controller	2.7-9.8	5/5
LTC3407-2	Monolithic	$2.5-5.5$	0.8/0.8	LTC3737	Controller	2.7-9.8	5/5
LTC3417	Monolithic	$2.25-5.5$	0.8/1.4	LTC3850	Controller	4-24	20/20
LTC3417A	Monolithic	$2.25-5.5$	1.0/1.5	LTC3728	Controller	4-36	20/20
LT3508	Monolithic	$3.7-36$	1.4/1.4	LTC3708	Controller	4-36	20/20
LT1940	Monolithic	3.6-25	1.4/1.4	LTC3728	Controller	4-36	20/20
LT3506/A	Monolithic	3.6-25	1.6/1.6	LTC3827	Controller	4-36	25/25
LT3510	Monolithic	3.3-25	2/2	LTC3727	Controller	4.5-36	25/25

## Additional Power Support Products

- Trackers/Sequencers
- Margining Controllers
- Silicon Oscillators
- $\mu \mathrm{P} / \mathrm{DSP} / F P G A$ Supervisor Circuits
- PMBus Interface Products

SwitcherCAD ${ }^{\text {TM }} /$ LTspice is a SPICE simulator for power supply, amplifier and filter designs

## Micrel Power Solutions for Xilinx Devices

VIRTEX-5 Family						Core Voltage: 1.0V
Input Supply	$\leq 200 \mathrm{~mA}$	$\leq 500 \mathrm{~mA}$	$\leq 1 \mathrm{~A}-1.5 \mathrm{~A}$	$\leq 2 \mathrm{~A}-5 \mathrm{~A}$	5A-10A	Up to 25A
1.8V	MIC5309	MIC68200	MIC68200	"MIC68400 (4A) MIC69502 (5A)"		
2.5 V to 5V	"MIC5309, MIC2203"	$\begin{gathered} \text { "MIC23050/1, } \\ \text { MIC33050 } \\ \text { 12 MIC23250*, } \\ \text { ½ MIC2238" } \end{gathered}$	"MIC4720, MIC4721"	"MIC22400 (4A)*, MIC4722, MIC4723"	MIC22600 (6A)	"MIC2169 (15A, Controller) MIC2159 (20A, Controller)"
$\leq 12 \mathrm{~V}$ to 24V			"MIC2130/1 (15A, Controller), MIC2198/9 (20A, Controller)"	"MIC2130/1 (15A, Controller), MIC2198/9 (20A, Controller)"	"MIC2130/1   (15A, Controller), MIC2198/9 (20A, Controller)"	"MIC2130/1 (15A, Controller), MIC2198/9 (20A, Controller)"
Spartan-3 Family"					5A-10A	
						Core Voltage: 1.2V
Input Supply	$\leq 200 \mathrm{~mA}$	$\leq 500 \mathrm{~mA}$	$\leq 1 \mathrm{~A}-1.5 \mathrm{~A}$	$\leq 2 \mathrm{~A}-5 \mathrm{~A}$		Up to 25A
1.8V	MIC5309	MIC68200	MIC68200	"MIC68400 (4A) MIC69502 (5A)"		"MIC2169 (15A, Controller) MIC2159 (20A, Controller)"
2.5 V to 5V	"MIC5309, MIC2203"	"MIC2205/06/45/85, MIC23050/1, MIC33050 ½ MIC23250*, $1 / 2$ MIC2238"	"MIC4720, MIC4721"	"MIC2207, MIC22400 (4A)*, MIC4722, MIC4723"	MIC22600 (6A)	
$\leq 12 \mathrm{~V}$ to $\mathbf{2 4 V}$			"MIC2130/1 (15A, Controller), MIC2198/9 (20A, Controller)"	"MIC2130/1 (15A, Controller), MIC2198/9 (20A, Controller)"	"MIC2130/1   (15A,   Controller),   MIC2198/9   (20A,   Controller)"	"MIC2130/1 (15A, Controller), MIC2198/9 (20A, Controller)"
Spartan-2 Family					5A-10A	
						Core Voltage: 2.5V
Input Supply	$\leq 200 \mathrm{~mA}$	$\leq 500 \mathrm{~mA}$	$\leq 1 \mathrm{~A}-1.5 \mathrm{~A}$	$\leq 2 \mathrm{~A}-5 \mathrm{~A}$		Up to 25A
1.8V	$\begin{gathered} \text { MIC2570 } \\ \text { (Boost) } \end{gathered}$	MIC2570(Boost)				"MIC2169 (15A, Controller) MIC2159 (20A, Controller)"
2.5 V to 5V	"MIC5319, MIC5259"	"MIC2205/06/45/85, MIC23050/1, MIC33050 1/2 MIC23250*, 1/2 MIC2238"	"MIC4720, MIC4721"	"MIC2207, MIC22400   (4A)*, MIC4722, MIC4723"	MIC22600 (6A)	
$\leq 12 \mathrm{~V}$ to $\mathbf{2 4 V}$	MIC4680/90	MIC4680/90	MIC4682	"MIC2130/1 (15A, Controller), MIC2198/9 (20A, Controller)"	"MIC2130/1   (15A,   Controller),   MIC2198/9   (20A,   Controller)"	"MIC2130/1 (15A, Controller), MIC2198/9 (20A, Controller)"


Virtex-II PRO \& Virtex-II Family						Core Voltage: 1.5 V
Input Supply	$\leq 200 \mathrm{~mA}$	$\leq 500 \mathrm{~mA}$	$\leq 1 \mathrm{~A}-1.5 \mathrm{~A}$	$\leq 2 \mathrm{~A}-5 \mathrm{~A}$	5A-10A	
1.8V	MIC5309	MIC68200	MIC68200	"MIC68400 (4A) MIC69502 (5A)"		


Virtex-II PRO	ex-II Family	led Viryer.				Core Voltage: 1.5 V
Input Supply	$\leq 200 \mathrm{~mA}$	$\leq 500 \mathrm{~mA}$	$\leq 1 \mathrm{~A}-1.5 \mathrm{~A}$	$\leq 2 \mathrm{~A}-5 \mathrm{~A}$	5A - 10A	Up to 25A
$\leq 12 \mathrm{~V}$ to 24V	MIC4680/90	MIC4680/90	MIC4682	"MIC2130/1 (15A, Controller), MIC2198/9 (20A, Controller)"	"MIC2130/1   (15A,   Controller),   MIC2198/9   (20A,   Controller)"	"MIC2130/1 (15A, Controller), MIC2198/9 (20A, Controller)"


Virtex-E \& Spartan-IIE \& CoolRunner-II Family			RTEXE	CoolRunner-II		Core Voltage: 1.8V
Input Supply	$\leq 200 \mathrm{~mA}$	$\leq 500 \mathrm{~mA}$	$\leq 1 \mathrm{~A}-1.5 \mathrm{~A}$	$\leq 2 \mathrm{~A}-5 \mathrm{~A}$	5A-10A	Up to 25A
1.8 V	MIC5309	MIC68200	MIC68200	"MIC68400 (4A) MIC69502 (5A)"		
2.5 V to 5V	"MIC5309, MIC2203"	$\begin{gathered} \text { "MIC2205/06/45/85, } \\ \text { MIC23050/1, } \\ \text { MIC33050 } \\ \text { 1/2 MIC23250*, } \\ \text { 1/2 MIC2238" } \end{gathered}$	"MIC4720, MIC4721"	"MIC2207, MIC22400 (4A)*, MIC4722, MIC4723"	MIC22600 (6A)	"MIC2169 (15A, Controller) MIC2159 (20A, Controller)"
$\leq 12 \mathrm{~V}$ to 24V	MIC4680/90	MIC4680/90	MIC4682	$\begin{gathered} \text { "MIC2130/1 (15A, } \\ \text { Controller), } \\ \text { MIC2198/9 (20A, Controller)" } \end{gathered}$	"MIC2130/1 (15A, Controller), MIC2198/9 (20A, Controller)"	"MIC2130/1 (15A, Controller), MIC2198/9 (20A, Controller)"
Power Supplies for I/O						
I/O Voltage	Input Voltage	500 mA	1A	2A - 5A	6A - 10A	20A
3.3 V	12V	MIC4680/90	MIC4680/90	MIC4686,MIC4685	"MIC2130/1 (15A, Controller), MIC2198/9 (20A, Controller)"	"MIC2130/1 (15A, Controller), MIC2198/9 (20A, Controller), MIC2168 (10A, Controller), MIC2169 (15A, Controller), MIC2159 (20A, Controller)"
	5V	MIC2202, MIC2204	MIC4721	"MIC22400(4A)*, MIC4720, MIC4721, MIC4722"	"MIC22600(6A), MIC2168 (10A, Controller)"	```"MIC2169 (15A, Controller), MIC2159 (20A, Controller), MIC2198/9 (20A, Controller)"```
2.5 V	12V	MIC4680/90	MIC4680/90	MIC4686,MIC4685	"MIC2130/1 (15A, Controller), MIC2198/9 (20A, Controller)"	"MIC2130/1 (15A, Controller), MIC2198/9 (20A, Controller), MIC2168 (10A, Controller), MIC2169 (15A, Controller), MIC2159 (20A, Controller)"
	5V	MIC2202, MIC2204	MIC4721	"MIC22400(4A)*, MIC4720, MIC4721, MIC4722"	"MIC22600(6A), MIC2168   (10A, Controller)"	"MIC2169 (15A, Controller), MIC2159 (20A, Controller), MIC2198/9 (20A, Controller)"
	3.3 V	MIC2202, MIC2204	MIC4721	"MIC22400(4A)*, MIC4720, MIC4721, MIC4722"	"MIC22600(6A), MIC2168 (10A, Controller)"	"MIC2169 (15A, Controller) MIC2159 (20A, Controller)"
1.8V	12V	MIC4680/90	MIC4680/90	MIC4686,MIC4685	"MIC2130/1 (15A, Controller), MIC2198/9 (20A, Controller)"	"MIC2130/1 (15A, Controller), MIC2198/9 (20A, Controller), MIC2168 (10A, Controller), MIC2169 (15A, Controller), MIC2159 (20A, Controller)"
	5V	MIC2202, MIC2204	MIC4721	"MIC22400(4A)*, MIC4720, MIC4721, MIC4722"	"MIC22600(6A), MIC2168 (10A, Controller)"	"MIC2169 (15A, Controller), MIC2159 (20A, Controller), MIC2198/9 (20A, Controller)"
	3.3 V	MIC2202, MIC2204	MIC4721	"MIC22400(4A)*, MIC4720, MIC4721, MIC4722"	"MIC22600(6A), MIC2168 (10A, Controller)"	"MIC2169 (15A, Controller) MIC2159 (20A, Controller)"
1.5V	12V	MIC4680/90	MIC4680/90	MIC4686,MIC4685	"MIC2130/1 (15A, Controller), MIC2198/9 (20A, Controller)"	"MIC2130/1 (15A, Controller), MIC2198/9 (20A, Controller), MIC2168 (10A, Controller), MIC2169 (15A, Controller), MIC2159 (20A, Controller)"
	5V	MIC2202, MIC2204	MIC4721	"MIC22400(4A)*,MIC4720, MIC4721, MIC4722"	"MIC22600(6A), MIC2168 (10A, Controller)"	"MIC2169 (15A, Controller), MIC2159 (20A, Controller), MIC2198/9 (20A, Controller)"
	3.3 V	MIC2202, MIC2204	MIC4721	"MIC22400(4A)*,MIC4720, MIC4721, MIC4722"	"MIC22600(6A), MIC2168   (10A, Controller)"	"MIC2169 (15A, Controller) MIC2159 (20A, Controller)"
	1.8 V	MIC68200	MIC68200	"MIC68400 (4A) MIC69502 (5A)"		

## Murata Power Solutions Powering innovation...

Murata Power Solutions' broad selection of DC/DC converters is well suited to powering modern FPGA products. A combination of distributed power and intermediate bus architecture products can effectively be deployed to meet the power requirements of leading FPGA products. These products include standard "brick" isolated converters as well as intermediate bus converters and non-isolated point-of-load (POL) converters. Examples of distributed and intermediate bus power architectures for powering FPGAs are provided here.

Intermediate Bus Power Solution for FPGA


Distributed Power Solution for FPGA


Steady State Power Requirements for FPGA Families in Typical Applications

Xilinx	Virtex-5	Virtex-4FX, SX, LX	Virtex-II Pro	Virtex-II	Virtex-E	Virtex	Spartan-3, -3E, -3L	Spartan-IIE	Spartan-II
$\mathbf{V}_{\text {clint }}$ (Core)	$\begin{aligned} & 1 \mathrm{~V} \pm 5 \% @ \\ & 200 \mathrm{~mA} \text { to } 5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1.2 \mathrm{~V} \pm 5 \% @ \\ & 200 \mathrm{~mA} \text { to } 5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~V} \pm 5 \% @ \\ & 200 \mathrm{~mA} \text { to } 12 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~V} \pm 5 \% @ \\ & 200 \mathrm{~mA} \text { to } 12 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1.8 \mathrm{~V} \pm 5 \% @ \\ & 200 \mathrm{~mA} \text { to } \mathrm{7A} \end{aligned}$	$\begin{aligned} & 2.5 \mathrm{~V} \pm 5 \% \text { @ } \\ & 200 \mathrm{~mA} \text { to } 7 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1.2 \mathrm{~V} \pm 5 \% @ \\ & 200 \mathrm{~mA} \text { to } 5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1.8 \mathrm{~V} \pm 5 \% @ \\ & 200 \mathrm{~mA} \text { to } 3 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.5 \mathrm{~V} \pm 5 \% \text { @ } \\ & 200 \mathrm{~mA} \text { to 2A } \end{aligned}$
V cco (Vo)	3.3V, 2.5V, 1.8V,   1.5 V and/or 1.2 V $\pm 5 \% @ 50 \mathrm{~mA}$   to 4A	3.3V, 2.5V, 1.8V,   1.5 V and/or 1.2 V $\pm 5 \% @ 50 \mathrm{~mA}$   to 4A	```3.3V, 2.5V, 1.8V and/or 1.5V \pm 5% @ 50mA to 5A```	$\begin{gathered} 3.3 \mathrm{~V}, 2.5 \mathrm{~V}, 1.8 \mathrm{~V} \\ \text { and/or } 1.5 \mathrm{~V} \pm \\ 5 \% @ 50 \mathrm{~mA} \\ \text { to } 5 \mathrm{~A} \end{gathered}$	$\begin{gathered} 3.3 \mathrm{~V}, 2.5 \mathrm{~V}, 1.8 \mathrm{~V} \\ \text { and/or } 1.5 \mathrm{~V} \pm \\ 5 \% @ 50 \mathrm{~mA} \\ \text { to } 5 \mathrm{~A} \end{gathered}$	$\begin{gathered} 3.3 \mathrm{~V}, 2.5 \mathrm{~V} \text { and } / \mathrm{or} \\ 1.5 \mathrm{~V} \pm 5 \% @ \\ 50 \mathrm{~mA} \text { to } 5 \mathrm{~A} \end{gathered}$	$3.3 \mathrm{~V}, 3.0 \mathrm{~V}, 2.5 \mathrm{~V}$,   $1.8 \mathrm{~V}, 1.5 \mathrm{~V}$ and/or $1.2 \mathrm{~V} \pm 5 \%$ @ 50mA to 4A	$\begin{gathered} 3.3 \mathrm{~V}, 2.5 \mathrm{~V}, 1.8 \mathrm{~V} \\ \text { and/or } 1.5 \mathrm{~V} \pm \\ 5 \% @ 50 \mathrm{~mA} \text { to } \\ 750 \mathrm{~mA} \end{gathered}$	3.3V, 2.5 V and/or 1.5 V @ 50 mA to 500 mA
$\mathbf{V}_{\text {ccaux }}($ Aux)	$\begin{gathered} 2.5 \mathrm{~V} \pm 5 \% @ \\ 300 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 2.5 \mathrm{~V} \pm 5 \% @ \\ 300 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 2.5 \mathrm{~V} \pm 5 \% @ \\ 300 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 3.3 \mathrm{~V} \pm 5 \% @ \\ 300 \mathrm{~mA} \end{gathered}$	-	-	$\begin{gathered} 2.5 \mathrm{~V} \pm 5 \% @ \\ 300 \mathrm{~mA} \end{gathered}$	-	-

Some models have reduced output currents for the higher output voltage.
For more precise power requirements for specific FPGA applications please refer to the Xilinx Power Estimators available at www.xilinx.com/power.

Murata Power Solutions reserves the right to alter or improve the specifications, data, descriptions, intermal design, or manufacturing process at any time, without notice. Please
check with your supplier or visit our website to ensure that you have the current and complete specification for your product before use
While such information is believed to be accurate as indicated herein, Murata Power Solutions makes no warranty and hereby disclaims all warranties, express or implied, with regard to the accuracy or completeness of such information. Further, because the product(s) Power Solutions hereby disclaims all warranties, either express or implied, concerning the fitness or suitability of such product(s) for any particular use or in any specific application or arising from any course of dealing or usage of trade. The user is solely responsible for determining the
suitability of the product(s) featured herein for user's intended purpose and in user's specific application. The products are not suitable for use as Safety Critical Components, Murata Power Solutions' liability for Murata Power Solutions' standard warranty applicable to the product ("The Warranty"). The warranty is exclusive and offered in lieu of all other express, implied, or statutory warranties including, without limitation, implied warranties of merchantability and fitness for a particular purpose.
In no event shall Murran
sale of products to buyer. and reardloss liabiry for any damages arising out of any may be based, exceed the amount that supplier has received as payment for such products and under no circumstances shall supplier be subject to any consequential
to damages for lost profits or goodwill, even if supplier was advised of the possibility of
such damage.
No part of this publication may he conied, transmitted or stored in a retrieval system or reproduced in any way incuding, but not limited to, photography, photocopy magnetic or other recording means, without prior witten permission from Murata Power Solutions.
1 Safety Critical Component means any component whose failure to perform could cause the failure of, or affect the operation of a Life Support Device 2 Life Support Device means any device, system or ancillary equipment intended for implant into the body or used in relation to supporting or sustaining life

## Murata Power Solutions FPGA Power Guide

## Modular vs Discrete Power Solutions for FPGAs

Many vendors currently offer power solutions for FPGAs using discrete based power solutions. While these solutions may seem attractive initially from a pure cost assessment, modular solutions offer many key advantages: minimal design resources; reduced parts count and board real estate; multiple sourcing.

## Intermediate Bus Power Solutions

- Modular DC/DC converter solution requires minimal design resources and is suitable for powering one or more FPGAs
- Highly efficient solution with POL conversion efficiencies approaching 93\%
- Space efficient SMT packages designed for use in low-cost automated manufacturing environments
- Reliable power conversion solution with typical converter MTTF in excess of 1 million hours per Telcordia standards

Xilinx Spartan-3 Application Example, 10A Core Voltage ( $\mathrm{V}_{\text {cсілт }}$ )


Distributed Power Solutions

- Modular DC/DC converter solution suitable for powering one or more FPGAs from standard telecomm -48Vdc bus
- Low profile, industry standard open frame converters with conversion efficiencies approaching 90\%
- Space efficient, high power density power conversion solution available in both through hole and SMT packaging
- Reliable power conversion solution with typical converter MTTF in excess of 1 million hours per Telcordia standards

Xilinx Virtex-II Application Example, 40A Core Voltage ( $\mathrm{V}_{\text {ccint }}$ )


## Design Considerations

- Core and I/O power consumption are design and application dependent. For more precise power requirements for specific FPGA applications please refer to the Xilinx Power Estimators available at www.xilinx.com/power.
- Bulk and/or bypass capacitors will be required between the input supply and DC/DC converters depending on the placement of the input supply relative to the converters. Consult FPGA manufacturers datasheets to ensure adequate bulk and bypass capacitors are used.
- Start-up profile requirements vary by FPGA families and manufacturers; review FPGA device specifications for design considerations such as ramp-up and inrush current.

Murata Power Solutions DC/DC Converter Modules Reduce System Parts Count and Simplify Solution Design...

Product	Description	Power (W)	Input Voltage (Vdc)	$\underset{\text { (Vdc) }}{\text { Output Voltage(s) }}$	Output Current (A)
Isolated Converters					
ULQ	Single Output, Quarter Brick, Through Hole/Surface Mount	66	18-36 \& 36-75	1.2-12	25
ULE	Single Output, Eighth Brick, Through Hole/Surface Mount	60	$\begin{array}{c\|} \hline 9-18,18-36, \& \\ 36-75 \end{array}$	1.2-24	30
UHP	Single Output, Half Brick, Through Hole	148	36-75	1.5, 1.8, 2.5, 3.3	60
A Series 7-15W	Single Output, $1^{\prime \prime} \times 2^{\prime \prime}$, Through Hole	15	$\begin{gathered} 10-18,18-36 \\ \& 36-75 \\ \hline \end{gathered}$	$\begin{gathered} 1.2,1.5,1.8,2.5,3.3,5.0 \\ 12,15 \end{gathered}$	10
UHE 12-30W	Single Output, $1.6^{\prime \prime} \times 2^{\prime \prime}$, Through Hole	10	$\begin{gathered} 9-18,9-36, \\ \& 36-75 \end{gathered}$	$\begin{gathered} 1.2,1.5,1.8,2.5,3.3,5.0 \\ 12,15 \end{gathered}$	10
Q-Class	Single Output, Quarter Brick Single Board, PTH	144	36-75	$\begin{aligned} & \text { 1.2, 1.5, 1.8, } \\ & 2.5,3.3,12 \\ & \hline \end{aligned}$	55
UWR 7-15W	1 " $\times 2$ ", Through Hole	15	$\begin{gathered} 10-8,18-36, \& \\ 36-75 \end{gathered}$	1.2-15	6
HPH	70A Half Brick	350	36-75	1-5	70
UVQ	Low-Profile Quarter Brick	125	18-36 \& 36-75	1.2-48	40
UQQ	Wide Input Quarter Brick	105	9-36 \& 18-75	3.3-15	25
UCQ	Low-Cost Quarter Brick	115	18-36 \& 36-75	3.3 \& 5	35
Bus Converters					
EUS15-120	Single Output Eighth Brick, Pth	180	$36 \mathrm{~V}-55 \mathrm{~V}$	12	15
EUS20-120	Single Output Eighth Brick, Pth	240	$36 \mathrm{~V}-55 \mathrm{~V}$	12	20
QUS20-120	Single Output Quarter Brick, Pth	240	$36 \mathrm{~V}-55 \mathrm{~V}$	12	20
Non-Isolated (POL) Converters					
NGA	Single Adjustable and Fixed Output, SIP/DIP	10	4.75-28	1.8, 2.5, 3.3, 5.0	2
LSM/LSN-10A	Single Fixed Output, SMT/SIP	50	$\begin{array}{\|c\|} \hline 3.0-3.6, ~ 4.5-5.0 \\ 10.8-13.2 \\ \hline \end{array}$	$\begin{gathered} 1.0,1.2,1.5,1.8,2.5, \\ 3.3,5.0 \end{gathered}$	10
LSM/LSN-16A	Single Adjustable and Fixed Output, SMT/SIP	50	3.0-5.5 \& 10-14	0.75-5.0	16
LSM/LSN2	Adjustable Output SMT/SIP	52	2.4-5.5 8.3-14	0.75-5	6,10, 16
LSN2-T/22	Adjustable Output SMT/SIP 22A	112	8.3-14	0.8-5	22
LSN2-T30	Adjustable Output SMT/SIP 30A	150	6-14	0.8-5	30
LEN	Single Output, Eighth Brick, Through Hole/SMT	125	10.2-13.8	$\begin{array}{\|c\|} \hline 0.8,1.0,1.2,1.5,1.8,2.5, \\ 3.3,5.0 \\ \hline \end{array}$	28
HEN	Single Output, Eighth Brick, Through Hole/SMT, High di/dt	125	10.2-13.8	$\begin{gathered} 0.8,1.0,1.2,1.5,1.8,2.5 \\ 3.3,5.0 \end{gathered}$	25
LQN	Single Output, Quarter Brick, Through Hole/SMT	225	10.2-13.8	$\begin{gathered} 0.8,1.0,1.2,1.5,1.8,2.5 \\ 3.3,5.0 \\ \hline \end{gathered}$	50
VCN60	Single Adjustable Output, Through Hole, Vertical Mount	120	10.2-13.2	0.6-3.5	60
VCN70		140	10.2-13.2	0.6-3.5	70
NCA005	Single Adjustable Output, SMT/SIP	16.5	$3.0 \mathrm{~V}-5.5 \mathrm{~V}$	0.75-3.3	5
NCA015		49.5	$3.0 \mathrm{~V}-5.5 \mathrm{~V}$	0.75-3.3	15
NEA005		25	$8.3 \mathrm{~V}-14 \mathrm{~V}$	0.75-5.0	5
NEF010	Single Fixed Output, SMT/SIP	50	8.3V-14V	$\begin{gathered} \text { 1.0, 1.2, 1.5, 1.8, 2.0, 2.5, } \\ 3.3,5.0 \end{gathered}$	10
NEA010	Single Adjustable Output, SMT/SIP	50	8.3V-14V	0.75-5.0	10
NEA016		80	$8.3 \mathrm{~V}-14 \mathrm{~V}$	0.75-5.0	16
NFA010		50	$6.0 \mathrm{~V}-14 \mathrm{~V}$	0.75-5.0	10
NFA016		80	$6.0 \mathrm{~V}-14 \mathrm{~V}$	0.75-5.0	16
NFA020		100	$6.0 \mathrm{~V}-14 \mathrm{~V}$	0.75-5.0	20



Murata Power Solutions

Virtex ${ }^{\text {® }} 5$						Core Voltage: 1.0 V
Input Supply	$<=200 \mathrm{~mA}$	$<=500 \mathrm{~mA}$	$<=1$ to 1.5 A	$<=2$ to 2.5 A	$<=3$ to 5 A	$<=25$ A
2.5 to 5.5 V	NCP1521/2/3 Buck Controller NCP5211 Buck Controller NCP1529 Buck Controller	NCP1521/2/3 Buck Controller NCP5211 Buck Controller NCP1529 Buck Controller	NCP565 Linear   NCP5661 Linear   NCP5211 Buck Controller   NCP1595 Buck Controller	NCP5662 Linear   NCP5211 Buck Controller	NCP5663 Linear   NCP5211 Buck Controller	NCP1582/3 Buck Controller
< $=24 \mathrm{~V}$	NCP5211 Buck Controller	NCP1582/3 Buck Controller				

Virtex-4, Spartan ${ }^{\text {TM }}$-3, Spartan-3A, Spartan-3E
Core Voltage: 1.2 V

Input Supply	< 200 mA	$<=500 \mathrm{~mA}$	$<=1$ to 1.5 A	$<=2$ to 2.5 A	$<=3$ to 5 A	< $=25$ A
1.8 V	LM2931 Linear NCP584 Linear					
2.5 to 5.5 V	LM2931 Linear   NCP584/5 Linear   NCP5211 Buck Controller   NCP1521/2/3 Buck Converter	NCP565 Linear   NCP5661 Linear   NCP5211 Buck Controller   NCP1521/2/3 Buck Converter	NCP565 Linear NCP5661 Linear NCP5211 Buck Controller	NCP5662 Linear   NCP5211 Buck Controller	NCP5663 Linear   NCP5211 Buck Controller	NCP1582/3 Buck Controller
< $=24 \mathrm{~V}$	NCP5211 Buck Controller	NCP1582/3 Buck Controller				


Virtex-II Pro, Virtex-II						Core Voltage: 1.5 V$<=25 \mathrm{~A}$
Input Supply	< $=200 \mathrm{~mA}$	$<=500 \mathrm{~mA}$	< $=1$ to 1.5 A	$<=2$ to 2.5 A	$<=3$ to 5 A	
1.8 V	NCP551 Linear	NCP3335 Linear NCP5500/1 Linear				
2.5 to 5.5 V	NCP551 Linear NCP582/3 Linear NCP1521/2/3 Buck Converter	NCP1521/2/3 Buck Converter	NCP565 Linear   NCP5661 Linear   NCP3163 Buck Converter CS51031 Buck Controller	NCP5662 Linear NCP3163 Buck Converter CS51031 Buck Controller	NCP5663 Linear NCP630 Linear CS51031 Buck Controller	
< $=12 \mathrm{~V}$	NCP3163 Buck Converter CS51033 Buck Converter	NCP3163 Buck Converter CS51033 Buck Converter	CS51413 Buck Converter CS51033 Buck Controller	NCP3163 Buck Converter CS51033 Buck Controller	NCP5211 Buck Controller CS51033 Buck Controller	NCP1582/3 Buck Controller
$<=24 \mathrm{~V}$	NCP3163 Buck Converter LM2574 Buck Converter	NCP3163 Buck Converter LM2574 Buck Converter	CS51413 Buck Converter LM2574 Buck Converter	NCP3163 Buck Converter LM2576 Buck Converter	CS51033 Buck Controller	


Virtex-E, Spartan-IIE, CoolRunner®-II, CoolRunner-IIA						Core Voltage: 1.8 V$<=25 \mathrm{~A}$
Input Supply	$<=200 \mathrm{~mA}$	$<=500 \mathrm{~mA}$	<=1 to 1.5 A	$<=2$ to 2.5 A	$<=3$ to 5 A	
2.5 to 5.5 V	NCP584 Linear   NCP561 Linear   NCP1521/2/3 Buck Converter	NCP3335 Linear   NCP5500/1 Linear   NCP1521/2/3 Buck Converter	NCP565 Linear NCP5661 Linear NCP3163 Buck Converter	NCP5662 Linear NCP1550 Buck Controller NCP3163 Buck Converter	NCP5663 Linear NCP630 Linear CS51031 Buck Controller	
< $=12 \mathrm{~V}$	NCP3163 Buck Converter CS51033 Buck Controller	NCP3163 Buck Converter CS51033 Buck Controller	CS51413 Buck Converter CS51033 Buck Controller	NCP3163 Buck Converter LM2576 Buck Converter	CS51031 Buck Controller NCP5211 Buck Controller	NCP1582/3 Buck Controller
< $=24 \mathrm{~V}$	NCP3163 Buck Converter LM2574 Buck Converter	NCP3163 Buck Converter LM2574 Buck Converter	CS51413 Buck Converter LM2574 Buck Converter	NCP3163 Buck Converter LM2576 Buck Converter	CS51033 Buck Controller	

## Spartan-II, XC9500XV

Input Supply	<=200 mA	$<=500 \mathrm{~mA}$	$<=1$ to 1.5 A	$<=2$ to 2.5 A	$<=3$ to 5 A	$<=25$ A
1.8 to 2.5 V	NCP1410 Boost Converter NCP1423 Boost Converter	NCP1421 Boost Converter NCP1422 Boost Converter				
3 to 5.5 V	NCP582 Linear   NCP583 Linear   NCP1521/2/3 Buck Converter	NCP3335 Linear   NCP5500/1 Linear   NCP1521/2/3 Buck Converter	NCP565 Linear NCP5661 Linear NCP3163 Buck Converter	NCP5662 Linear   NCP1550 Buck Controller NCP3163 Buck Converter	NCP5663 Linear NCP630 Linear CS51031 Buck Controller	
< $=12 \mathrm{~V}$	NCP3063 Buck Converter LM2574 Buck Converter	NCP3063 Buck Converter LM2574 Buck Converter	CS51413 Buck Converter CS51033 Buck Controller	NCP3163 Buck Converter LM2576 Buck Converter	CS51031 Buck Controller NCP5211 Buck Controller	NCP1582/3 Buck Controller
< $=24 \mathrm{~V}$	NCP3063 Buck Converter LM2574 Buck Converter	NCP3063 Buck Converter LM2574 Buck Converter	CS51413 Buck Converter LM2574 Buck Converter	NCP3163 Buck Converter LM2576 Buck Converter	CS51033 Buck Controller	

## CoolRunner XPLA3, XC9500XL

Input Supply	< 200 mA	$<500 \mathrm{~mA}$	$<=1$ to 1.5 A	$\leqslant=2$ to 2.5 A	< $=3$ to 5 A	$<=25$ A
1.8 to 3 V	NCP1402 Boost Converter NCP1410 Boost Converter NCP1423 Boost Converter	NCP1421 Boost Converter NCP1422 Boost Converter NCP1450A Boost Converter				
3 to 3.6 V	NCP1521/2/3 Buck Converter NCP3063 Buck Converter	NCP1521/2/3 Buck Converter NCP3063 Buck Converter	NCP3163 Buck/Boost	NCP3163 Buck/Boost		
3.3 to 5.5 V	NCP511 Linear NCP1521/2/3 Buck Converter NCP3063 Buck Converter	NCP3335 Linear NCP5500/1 Linear NCP1521/2/3 Buck Converter NCP3063 Buck Converter	NCP565 Linear   NCP5661 Linear   NCP3163 Buck Converter	NCP5662 Linear NCP1550 Buck Controller NCP3163 Buck Converter	NCP5663 Linear NCP630 Linear CS51031 Buck Controller	
< $=12 \mathrm{~V}$	NCP3063 Buck Converter CS51033 Buck Controller	NCP3063 Buck Converter CS51033 Buck Controller	CS51413 Buck Converter CS51033 Buck Controller	NCP3163 Buck Converter LM2576 Buck Converter	CS51031 Buck Controller NCP5211 Buck Controller	NCP1582/3 Buck Controller
$<=24 \mathrm{~V}$	NCP3063 Buck Converter LM2574 Buck Converter	NCP3063 Buck Converter LM2574 Buck Converter	CS51413 Buck Converter LM2574 Buck Converter	NCP3163 Buck Converter LM2576 Buck Converter	CS51033 Buck Controller	


XC9500						Core Voltage: 5.0 V$<=25 \mathrm{~A}$
Input Supply	< 200 mA	< $=500 \mathrm{~mA}$	$<=1$ to 1.5 A	$<=2$ to 2.5 A	< $=3$ to 5 A	
1.8 V	NCP1402 Boost Converter NCP1410 Boost Converter	NCP1421 Boost Converter NCP1422 Boost Converter NCP1450A Boost Converter				
2.5 to 4.5 V	NCP1402 Boost Converter NCP1410 Boost Converter	NCP1421 Boost Converter NCP1422 Boost Converter NCP1450A Boost Converter	NCP3163 Buck Converter	NCP3163 Buck Converter	NCP1442 Boost Converter CS51033 Buck Controller	
4.5 to 5.5 V	NCP3063 Buck Converter	NCP3063 Buck Converter	NCP3163 Buck Converter	NCP3163 Buck Converter	CS51031 Buck Controller	
< $=12 \mathrm{~V}$	NCP3063 Buck Converter LM2574 Buck Converter	NCP3063 Buck Converter LM2574 Buck Converter	CS51413 Buck Converter CS51033 Buck Controller	NCP3163 Buck Converter LM2576 Buck Converter	CS51031 Buck Controller NCP5211 Buck Controller	NCP1582/3 Buck Controller
< $=24 \mathrm{~V}$	NCP3063 Buck Converter LM2574 Buck Converter	NCP3063 Buck Converter LM2574 Buck Converter	CS51413 Buck Converter LM2574 Buck Converter	NCP3163 Buck Converter LM2576 Buck Converter	MC33167 Buck Converter CS51033 Buck Controller	



ST Microelectronics Voltage Regulators
Xilinx Part Number

LINEAR
SWITCHING

Virtex-4 ${ }^{\text {TM }}$	Vccint (1.2V)	Vccaux (2.5V)	Vcco ${ }^{1}$	Vccint (1.2V)	Vccaux (2.5V)	Vcco ${ }^{1}$
XC4VLX15, 25, 40	LD1117xx12	L4931ABD25x	L4931, LD29300	L6926D	ST750	L5972D
XC4VLX60, 80, 100	LD1117xx12	KF25	L4931, LD29300	L6926D	ST750	L5972D
XC4VLX160, 200	LD1117Axx12	LD29080 $\times 25$	L4931, LD29300	15970	L6926D	L4973
XC4VSX25	LD1117xx12	L4931ABD25x	L4931, LD29300	L6926D	ST750	L5972D
XC4VSX35, 55	LD1117xx12	KF25	L4931, LD29300	L6926D	ST750	L5972D
XC4VFX12, 20, 40	LD1117xx12	L4931ABD25x	L4931, LD29300	L6926D	ST750	L5972D
XC4VFX60, 100	LD1117xx12	KF25	L4931, LD29300	L6926D	ST750	L5972D
XC4VFX140	LD1117Axx12	LD29080 $\times 25$	L4931, LD29300	L5970	L6926D	L4973


Virtex-II Pro   TM   Virtex-II Pro X						
XC2VP2, 4, 7	Vccint (1.5V)	Vccaux (2.5V)	Vcco $^{\mathbf{1}}$	Vccint (1.5V)	Vccaux (2.5V)	Vcco ${ }^{\text {1 }}$
XC2VP20, $\mathbf{x 2 0 , 3 0}$	KF15	L4931ABD25x	L4931, LD29300	L6926D	ST750A	ST750A
XC2VP40, 50,	LD1117 $^{\mathbf{2}}$	L4931ABD25x	L4931, LD29300	L5970D	ST750A	L5970
XC2VP70, X70, 100, 125	LD29150xx15	L4931ABD25x	L4931, LD29300	L5972D	ST750A	L5970


Virtex-II ${ }^{\text {TM }}$	Vccint (1.5V)	Vccaux (3.3)	Vcco ${ }^{1}$	Vccint (1.5)	Vccaux (3.3)	Vcco ${ }^{1}$
XC2V40-XC2V1000	L4931ABD15TR	LD2981Cxx 33	L4931, LD29300	L5970	ST763A	ST750A
XC2V1500-XC2V3000	KF15	LD2981Cxx33	L4931, LD29300	ST1S03	ST763A	ST750A
XC2V4000, XC2V6000	LD1117 ${ }^{2}$	LD2981Cxx 33	L4931, LD29300	14973	ST763A	St750A
XCE2V8000	LD29150xx15	LD2981Cxx 33	L4931, LD29300	14973	ST763A	St750A


$\begin{aligned} & \text { Virtex-EM } M^{T M} \\ & \text { Virtex-ETM } \\ & \hline \end{aligned}$	Vccint (1.8)	Vcco ${ }^{1}$	Vccint	Vcco ${ }^{1}$
XCV50E-XVC600E (Commercial grade )	LF18Cxx	L4931	L6926D or L5970D	ST750A
XCV812E - XCV200E (Commercial grade )	LD1117Axx18	L4931	L5970D	ST750A
XCV2600E - XCV3200 (Commercial grade )	LD1086xx18	L4931	L5972D	ST750A
XCV50E - XCV3200E   ( Industrial grade)	LD1085xx18	L4931	L5973D	ST750A

${ }^{1}$ The required I/O current will depend on several design specific factors, including I/O usage, loading, etc. Designers should use FPGA power estimator tools to determine the required Iccio current.
${ }^{2}$ The adjustable version of the LD1117 regulator can be configured to supply 1.5 V .



ST Microelectronics Voltage Regulators						
Xilinx Part Number	LINEAR			SWITCHING		
Spartan-3 ${ }^{\text {TM }}$, Spartal-3L ${ }^{\text {TM }}$   Spartan -3E ${ }^{\mathrm{TM}}$	Vccint (1.2V)	Vccaux (2.5)	Vcco ${ }^{1}$	Vccint (1.2)	Vccaux (2.5V)	Vcco ${ }^{1}$
XC3S50 - XCS1000	LD1117xx12	L4931xx25	Icc< 500mA LExx	L5970	ST750A	Icc< $450 \mathrm{~mA} \mathrm{ST750A}$
XC3S100E - XCS250E	LD1117xx12	L4931xx25	Icc< 1A LD1117A	L5970	ST750A	Icc< 1.0A L5970
XC3S1000L - XC3S4000L	LD1117×x12	L4931××25	Icc< 1.5A LD29150	L5970	ST750A	Icc< 2.0A L5973
XC3S1500-XC3S5000	LD1117Axx12	L4931xx25	Icc< 3A LD29300	L4973	ST750A	Icc< 3.5A L4973
XC3S500E - XCS1600E	LD1117Axx12	L4931xx25	84	14973	ST750A	Icc> 3.5A L6910


Spartan-IIE ${ }^{\text {TM }}$	Vccint (1.8V)	Vcco ${ }^{1}$	Vccint (1.8V)	Vcco ${ }^{1}$
$\begin{aligned} & \text { XC2S50E - XC2S300E (C) } \\ & \text { (Before PCN) }^{2} \end{aligned}$	LF18C (500mA) ${ }^{4}$	Icc< 500mA LExx   Icc< 1A LD1117A	15970	Icc<450mA ST750A
$\begin{aligned} & \text { XC2S50E - XC2S300E (C) } \\ & \text { (After PCN) } \end{aligned}$	LF18C ( 300 mA$)^{4}$		ST750A	Icc< 1.0A L5970
XC2S400E - XC2S600E (C)	LF18C (500mA) ${ }^{4}$		L5970	
$\begin{aligned} & \text { XC2S50E-XC2S300E (I) } \\ & (\text { (Before PCN) } \end{aligned}$	LD1086xx18 (2A) ${ }^{4}$	Icc< 3A LD29300	L5973D or L4973	Icc< 3.5A L4973
$\begin{aligned} & \text { XC2S50E - XC2S300E (C) } \\ & (\text { After PCN) } \end{aligned}$	LF18C (500mA) ${ }^{4}$		L5970	
XC2S400E - XC2S600E (I)	LD1117xx18 ( 700 mA$)^{4}$	Icc< 5A LD1084	$\mathbf{L 5 9 7 0}$	Icc> 3.5A L6910


Spartan-II ${ }^{\text {TM }}$	Vccint (2.5V)	Vcco ${ }^{1}$	Vccint (2.5V)	Vcco ${ }^{1}$
$\begin{aligned} & \text { XC2S15-XC2S } 150(\mathrm{I})\left(0^{\circ} \mathrm{C}<\mathrm{Tj}\right) \\ & \text { (data code } 0321 \text { or later) }^{3} \end{aligned}$	KF25xx ( 500 mA$)^{4}$	Icc< 500mA LExxIcc< 1A LD1117A	L5970D	Icc<450mA ST750A
$\text { XC2S15-XC2S } 150(\mathrm{I})\left(\mathrm{Tj}<0^{\circ} \mathrm{C}\right)$   (data code 0321 or later) ${ }^{3}$	LD29150xx25 (1.5A) ${ }^{4}$		L5972D	Icc< 1.0A L5970
XC2S15-XC2S 150 (C)   (data code $^{0} 0321$ or later) ${ }^{3}$	L4931 ( 250 mA$)^{4}$		ST750A	Icc< 2.0 A 15973
$\begin{aligned} & \text { XC2S15-XC2S } 150(\mathrm{I})\left(0^{\circ} \mathrm{C}<\mathrm{Tj}\right) \\ & {\text { (data code before } 0321)^{3}} \end{aligned}$	KF25xx ( 500 mA$)^{4}$	Icc< 3A LD29300	L5970D	Icc< 3.5A L4973
$\begin{aligned} & \text { XC2S15 - XC2S } 150(\mathrm{I})\left(\mathrm{Tj}<0^{\circ} \mathrm{C}\right) \\ & {\text { (data code before } 0321)^{3}} \end{aligned}$	LD29300xx25 (2A) ${ }^{4}$	Icc< 5A LD1084	L5972D	
$\begin{aligned} & \text { XC2S15 - XC2S } 150(\mathrm{C}) \\ & {\text { (data code before } 0321)^{3}}^{\text {(d }} \end{aligned}$	KF25xx $(500 \mathrm{~mA})^{4}$		L5970D	Icc> 3.5A L6910

${ }^{1}$ The required I/O current will depend on several design specific factors, including I/O usage, loading, etc. Designers should use FPGA power estimator tools to determine the required Iccio current.
${ }^{2}$ Devices built after the Product Change Notice PCN 2002-05 (see http://mww.xilinx.com/bvdocs/notifications/pon2002-05.pdf) have improved power-on requirements. Devices after the PCN have a ' $T$ ' preceding the date code as referenced in the PCN. Note that the XC2S150E, XC2S400E, and XC2S600E always have this mark. Devices before the PCN have an 'S' preceding the date code. Note that devices before the PCN are measured with VCCINT and VCCO powering up simultaneously.
${ }^{3}$ The date code is printed on the top of the device's package.
${ }^{4}$ The minimum supply current ICCPO required for a successful power-on. If more current is available, the FPGA can consume more than ICCPO minimum, though this cannot adversely affect reliability.


# ST Microelectronics Power Solutions 

## Design Guide for Xilinx FPGA <br> Power Management Systems

The following table lists the output current for the recommended voltage regulators in this application note. Other regulators are also available, please consult your ST sales representative or the ST website: http://wmw.st.com, for the complete product porffolio.

ST Voltage Regulator Max Output Current

Part Number	Input Voltage	Output Voltage	Output Current	Topology	Evaluation Board	On Line Simulation
LD2981	(Vout+1V) - 16V	1.5-5.0V	100 mA	Linear		
L4931	3.3-20V	1.25-12V	250mA	Linear		
ST730A	$5.2-11 \mathrm{~V}$	5 V	450 mA	Switching		
ST750A	4-11V	Adj.	450 mA	Switching		
ST763A	3.3-11V	3.3 V	500 mA	Switching		
KFxx Series	2.5-20V	1.5 V	500 mA	Linear		
LF18	2.5-20V	1.8 V	500 mA	Linear		
KF25	2.5-20V	2.5 V	500 mA	Linear		
LD1117	$2.4-15 \mathrm{~V}$	1.2-5.0V, Adj	800mA	Linear		
LD29080	2.5-13V	1.5-9V, Adj	800 mA	Linear		
L6926D	$2-5.5 \mathrm{~V}$	Adj (0.6-5V)	800mA	Switching	Yes	
L5970	$4.4-36 \mathrm{~V}$	Adj (1.23-35V)	1A	Switching	Yes	Yes
LD1117A	$2.5-10 \mathrm{~V}$	1.2-5V, Adj	1A	Linear		
LD1086	4.1-30V	1.5-12V, Adj	1.5A	Linear		
LD29150	2.5-13V	1.5-8V, Adj	1.5A	Linear		
MC34063	3-40V	Adj	1.5A (switch current)	Switching		
ST1S03	3 V to 16 V	Adj down to 0.8V	1.5A	Switching	Yes	
L5972D	$4.4-36 \mathrm{~V}$	Adj (1.235-35V)	2A (switch current)	Switching	Yes	Yes
L5973	$4.4-36 \mathrm{~V}$	Adj (1.235-35V)	2.5A (switch current)	Switching	Yes	Yes
LD1085	$2.85-30 \mathrm{~V}$	1.5-12V, Adj	3A	Linear		
LD29300	2.5-13V	$1.5-9 \mathrm{~V}$, Adj	3.0A	Linear		
L4973	8-55V	Adj (0.5-50V)	3.5A	Switching	Yes	Yes
LD1084	3-30V	1.5-12V, Adj	5A	Linear		
L6910	5-12V	Adj (0.9-5V)	20A	Driver	Yes	

L497x \& L597x On-Line Simulators
Besides support material such as application notes and evaluation boards, ST also provides online simulation software ("SW") which can be accessed at:
htto://www.st.com/stonline/products/support/designin/switchingl.htm
This software is dedicated to switching regulators up to 2A.


Xilinx I/O Standards	Pletronics Oscillator Family	Frequency Range (MHz)	Package Size (mm)	Voltage
Differential Outputs				
LVDS, 2.5 V	LV77DW	1-250	$5 \times 7$	2.5 V
LVDS, 2.5 V	LV55DW	1-250	$3.2 \times 5$	2.5 V
LVDS, 3.3V	LV99DV	10-670	$5 \times 7$	3.3 V
LVDS, 3.3V	LV77DV	1-250	$5 \times 7$	3.3 V
LVDS, 3.3V	LV55DV	1-250	$3.2 \times 5$	3.3 V
LVDS, 3.3V	VLU7 (VCXO)	10-670	$5 \times 7$	3.3 V
LVPECL, 2.5 V	PE77DW	40-325	$5 \times 7$	2.5 V
LVPECL, 2.5 V	PE55DW	40-250	$3.2 \times 5$	2.5 V
LVPECL, 3.3V	PE99DV	10-1170	$5 \times 7$	3.3 V
LVPECL, 3.3V	PE77DV	40-325	$5 \times 7$	3.3 V
LVPECL, 3.3V	PE55DV	40-250	$3.2 \times 5$	3.3 V
LVPECL, 3.3V	VPU7 (VCXO)	10-766, 876-1170	$5 \times 7$	3.3 V
Single Ended Outputs				
LVTTL, 3.3V	SM77HV	1.5-70	$5 \times 7$	3.3 V
LVITL, 3.3V	SM77DV	70-180	$5 \times 7$	3.3 V
LVITL, 3.3V	SM55TV	1.5-125	$3.2 \times 5$	3.3 V
LVTTL, 3.3V	SM44TV	16-80	$2.5 \times 3.2$	3.3 V
LVCMOS 1.8 V	SM77HX	1.5-70	$5 \times 7$	1.8 V
LVCMOS 1.8V	SM77DX	70-180	$5 \times 7$	1.8 V
LVCMOS 1.8 V	SM55TX	1.5-125	$3.2 \times 5$	1.8 V
LVCMOS 1.8V	SM44TX	16-80	$2.5 \times 3.2$	1.8 V
LVCMOS 2.5 V	SM77HW	1.5-70	$5 \times 7$	2.5 V
LVCMOS 2.5 V	SM77DW	70-180	$5 \times 7$	2.5 V
LVCMOS 2.5 V	SM55TW	1.5-125	$3.2 \times 5$	2.5 V
LVCMOS 2.5 V	SM44TW	16-80	$2.5 \times 3.2$	2.5 V
LVCMOS 3.3V	SM77HV	1.5-70	$5 \times 7$	3.3 V
LVCMOS 3.3V	SM77DV	70-180	$5 \times 7$	3.3 V
LVCMOS 3.3V	SM55TV	1.5-125	$3.2 \times 5$	3.3 V
LVCMOS 3.3V	SM44TV	16-80	$2.5 \times 3.2$	3.3 V
Real Time Clocks				
CMOS WATCH CRYSTAL OSCILLATOR	S3883	32.768 KHz	$4 \times 6.5$	1.5V-5.0V
CMOS WATCH CRYSTAL OSCILLATOR	S3881	32.768 KHz	$2.5 \times 4$	1.3V-5.5V
WATCH CRYSTALS	SM20S	32.768 KHz	$3.8 \times 8$	Plastic
WATCH CRYSTALS	SM13S	32.768 KHz	$1.5 \times 7$	Plastic
WATCH CRYSTALS	SM12S	32.768 KHz	$1.8 \times 4.9$	Ceramic
WATCH CRYSTALS	SM8S	32.768 KHz	$1.2 \times 3.2$	Ceramic




## Global Contact Information

## Nu Horizons Electronics

## UNITED STATES

## Corporate Headquarters

70 Maxess Road
Melville, NY 11747
Tel: 631-396-5000
Fax: 631-396-5050

## Alabama

Tel: 256-722-9330
Fax: 256-722-9348

## Arizona

Tel: 800-359-4818
Fax: 480-345-5528

## Callfornia

San Jose
Tel: 408-434-0800
Fax: 408-434-6849 livine
Tel: 949-470-1011
Fax: 949-470-1104
San Diego
Tel: 858-576-0088 Fax: 858-576-0990
Los Angeles
Tel: 818-874-9600
Fax: 818-874-9605

## Colorado

Tel: 800-200-1586
Fax: 303-379-2162

## Florida

North Florida
Tel: 407-831-0016 Fax: 425-928-4018 South Florida

Tel: 954-735-2555
Fax: 954-735-2880

## Georcia

Tel: 770-416-8666
Fax: 770-416-9060

## Illinois

Tel: 847-706-9100
Fax: 847-706-9111

## Maryland

Tel: 410-309-0030
Fax: 410-309-0088

## MASSACHUSETTS

Tel: 978-774-3330
Fax: 978-774-6633
Minnesota
Tel: 952-942-9030
Fax: 952-942-9144


## New Jersey

Tel: 973-882-8300
Fax: 973-882-8398

## New York

Melvile
Tel: 631-396-5000
Fax: 631-396-5050
Rochester
Tel: 585-292-0777
Fax: 585-292-0750

## North Garolina

Tel: 919-787-9426
Fax: 919-787-9430

## OHIO

Tel: 330-963-9933
Fax: 330-963-9944

## Oregon

Tel: 503-439-1200
Fax: 503-439-6286

## Pennsylvania

Tel: 215-659-8405
Fax: 215-659-1331

## TEXAS

Dallas
Tel: 972-202-5100
Fax: 972-202-5079
Austin
Tel: 512-382-3742
Fax: 512-382-3743

## Utah

Tel: 800-200-1586
Fax: 972-479-1410

## WASHINGTON

Tel: 425-452-7077
Fax: 425-452-7081

## CANADA

Montreal
Tel: 905-761-1911
Fax: 905-761-2811
Ottava
Tel: 905-761-1911
Fax: 905-761-2811
Toronto
Tel: 905-761-1911
Fax: 905-761-2811

## MEXICO <br> Chiluahua <br> Tel: (52) 6566487157 <br> Fax: (52) 6562071851 <br> Jalisco <br> Tel: (52) 3331332043 <br> Fax: (52) 3331331782

## ASIA/PACIFIC

Asia Headquarters
50 Kallang Avenue
\#06-01, Noel Corporate Building Singapore 339505

Tel: (65) 68441650

## INDIA

Bangalore
Tel: (91) 8041235217 / 18 / 19
Fax: (91) 8041122803

## Chennal

Tel: (91) 9790920925
Hyderabad
Tel: (91) 4066316357
Fax: (91) 4027813456

## Pune

Tel: (91) 9960602822
Fax: (91) 9890681081

## New Delhi

Tel: (91) 114167 4374/75
Fax: (91) 1141674376

## Greater Ghina

Hong Kong
Tel: (852) 35119911
Fax: (852) 35119990

## Beiding

Tel: (86) 1082251376 / 7
Fax: (86) 1082251375
Chengdu
Tel: (86) 28-6622-5166

## Hangzhou

Tel: (86) 57156765811

## Shanchal

Tel: (86) 2164411811
Fax: (86) 2164325790

## WUHAN

Tel: (86) 2787690810
Fax: (86) 2787690820


## Shenzhen

Tel: (86) 75533982850
Fax: (86) $\mathbf{7 5 5} 82190980$

## Nanuing

Tel: (86) 2164411811
Fax: (86) 2164325790

## TAIWAN

Tel: (886) 287973718
Fax: (886) 287973719

## VIETNAM

Tel: (84) 908131973

## MALAYSIA

Tel: (60) 46605888
Fax: (60) 46605883

## Singapore

Tel: (65) 68441650
Fax: (65) 68410494

## Thailand

Tel: (66) 26941368 / 9
Fax: (66) 26941370
Australia / New Zealand

## Melbourne

Tel: (61) 397206444
Fax: (61) 397209504

## Sydney

Tel: (61) 297461411
Fax: (61) 297461511

## EMEA

## Austria

## Vienna

Tel: (43) 6645566493
Fax: (49) 89923334599

## Denmark (c-88)

## HøRSHOLM

Tel: (45) 7010-4888
Fax: (45) 7010-4889

## Silkeborg

Tel: (45) 7010-4888
Fax: (45) 7010-4889

## Germany

Munich
Tel: (49) 8992 333-450
Fax: (49) 8992 333-4511

## Huncary

Nagykata
Tel: (36) 306964544
Poland
Warsaw
Tel: (48) 602389537

## Sweden (c-88)

Stockноlм
Tel: (46) 08-558-038-88
Fax: (46) 08-558-038-89

## United Kingdom

Coventry
Tel: (44) 02476437437
Fax: (44) 02476437401


[^0]:    EasyPath"' solutions provide a conversion-free path for volume production.
    2 A single Virtex-5 CLB comprises two slices, with each containing four 6 -input LUTs and four Flip-Flops (twice the number found in a Virtex-4 slice), for a total of eight 6 -LUTs and eight Flip-Flops per CLB Virtex- 5 logic cell ratings reflect the increased logic capacity offered by the new 6 -input LUT architecture.
    Digitally Controlled Impedance ( DCI ) is available on I/Os of all devices. One system monitor block included in all devices.
    Available I/O for each device-package combination: 6. Available $\mathrm{I} / \mathrm{O}$ for each device-package combination:
    7. All products available Pb -free and RoHS-Compliant.

[^1]:    Note: Monolithic dual-die and quad-die packages available

